929 research outputs found
Region Proposal and Regression Network for Fishing Spots Detection From Sea Environment
In this paper, a two-stage method is proposed for predicting the catch of skipjack tuna (Katsuwonus pelamis) from a 2D sea environmental pattern. Following the assumption that sea water temperature and sea surface height (SSH) which fishermen often use for finding fishing spots has a correlation with the skipjack tuna catch, a new approach of using Faster R-CNN in object detection is proposed. The proposed method consists of two part. In the first part, taking a sea temperature map as input, Faster R-CNN extracts the candidates of where skipjack tuna would be on the map in order to imitate the behaviors of fishers. In the second part, Support Vector Regression (SVR) estimates the catch amount in each candidate. Fater R-CNN is applied to several sea environmental patterns with three different loss functions and compares each performance. The proposed model is evaluated by comparing the result with average fishers' ability on the skipjack tuna catches and several criteria for evaluating the proposed model. The results show that the proposed method is able to outperform the average fishers' ability by an average of 3%
Additive Antinociception between Intrathecal Sildenafil and Morphine in the Rat Formalin Test
The possible characteristics of spinal interaction between sildenafil (phosphodiesterase 5 inhibitor) and morphine on formalin-induced nociception in rats was examined. Then the role of the opioid receptor in the effect of sildenafil was further investigated. Catheters were inserted into the intrathecal space of male Sprague-Dawley rats. For induction of pain, 50 µL of 5% formalin solution was applied to the hind-paw. Isobolographic analysis was used for the evaluation of drug interaction between sildenafil and morphine. Furthermore, naloxone was intrathecally given to verify the involvement of the opioid receptor in the antinociception of sildenafil. Both sildenafil and morphine produced an antinociceptive effect during phase 1 and phase 2 in the formalin test. The isobolographic analysis revealed an additive interaction after intrathecal delivery of the sildenafil-morphine mixture in both phases. Intrathecal naloxone reversed the antinociception of sildenafil in both phases. These results suggest that sildenafil, morphine, and the mixture of the two drugs are effective against acute pain and facilitated pain state at the spinal level. Thus, the spinal combination of sildenafil with morphine may be useful in the management of the same state. Furthermore, the opioid receptor is contributable to the antinocieptive mechanism of sildenafil at the spinal level
Dissemination of Strongyloides stercoralis in a patient with systemic lupus erythematosus after initiation of albendazole: a case report
<p>Abstract</p> <p>Introduction</p> <p><it>Strongyloides stercoralis </it>infection affects hundreds of millions of people worldwide. As immigration rates and international travel increase, so does the number of cases of strongyloidiasis in the United States. Although described both in immigrant and in immunosuppressed populations, hyperinfection and dissemination of <it>S. stercoralis </it>following the initiation of antiparasitic medication is a previously unreported phenomenon.</p> <p>Case presentation</p> <p>Here we describe the case of a 38-year-old immunocompromised woman with systemic lupus erythematosus, who developed disseminated disease following treatment with albendazole (400 mg every 12 hours). Notably the patient was receiving oral prednisone (10 mg once daily), azathioprine (50 mg twice daily), and hydroxychloroquine (400 mg daily) at the time of hospitalization. The patient was subsequently treated successfully with ivermectin (200 mcg/kg daily).</p> <p>Conclusion</p> <p>The reader should be aware that dissemination of <it>S. stercoralis </it>can occur even after the initiation of antiparasitic medication.</p
A novel conducting nanocomposite obtained by p-anisidine and aniline with titanium(IV) oxide nanoparticles: Synthesis, Characterization, and Electrochemical properties
Nanocomposites were successfully synthesized by the oxidative polymerization of p-anisidine and/or aniline monomers (at initial “p-anisidine:aniline” mole ratios of “100 : 0,” 50 : 50,” and “0 : 100”) with titanium(IV) oxide nanoparticles, in the presence of hydrochloric acid as a dopant with ammonium persulfate as an oxidant. The morphological, structural, conductivity, and electrochemical properties of the synthesized nanocomposites were studied using Transmission Electron Microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and UV–vis spectroscopies. The presence of polymer on TiO2 nanoparticles in samples nanocomposites was confirmed by the Transmission Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy. The thermal stability of samples nanocomposites were evaluated using the Thermogravimetric Analysis. Electrical conductivity of nanocomposites obtained is in the range of 0.08 − 0.91 S cm−1. The electrochemical behavior of the polymers extracted from the nanocomposites has been analyzed by cyclic voltammetry. Good electrochemical response has been observed for polymer films; the observed redox processes indicate that the polymerization on TiO2 nanoparticles produces electroactive polymers. These composite microspheres can potentially be used in commercial applications as fillers for antistatic and anticorrosion coatings.National Assessment and Planning Committee of the University Research (CNEPRU); contract grant number: E-03720130015; contract grant sponsor: MINECO; contract grant number: MAT2013-42007-P; contract grant sponsor: Generalitat Valenciana; contract grant number: PROMETEO2013/038; contract grant sponsor: Directorate General of Scientific Research and Technological Development (DGRSDT) of Algeria
Over-expression of a tomato N-acetyl-L-glutamate synthase gene (SlNAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses
A single copy of the N-acetyl-L-glutamate synthase gene (SlNAGS1) has been isolated from tomato. The deduced amino acid sequence consists of 604 amino acids and shows a high level of similarity to the predicted Arabidopsis NAGS1 and NAGS2 proteins. Furthermore, the N-terminus ArgB domain and the C-terminus ArgA domain found in SlNAGS1 are similar to the structural arrangements that have been reported for other predicted NAGS proteins. SlNAGS1 was expressed at high levels in all aerial organs, and at basic levels in seeds, whereas it was not detected at all in roots. SlNAGS1 transcript accumulation was noticed transiently in tomato fruit at the red-fruit stage. In addition, an increase of SlNAGS1 transcripts was detected in mature green tomato fruit within the first hour of exposure to low oxygen concentrations. Transgenic Arabidopsis plants have been generated expressing the SlNAGS1 gene under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Three homozygous transgenic lines expressing the transgene (lines 1-7, 3-8, and 6-5) were evaluated further. All three transgenic lines showed a significant accumulation of ornithine in the leaves with line 3-8 exhibiting the highest concentration. The same lines demonstrated higher germination ability compared to wild-type (WT) plants when subjected to 250 mM NaCl. Similarly, mature plants of all three transgenic lines displayed a higher tolerance to salt and drought stress compared to WT plants. Under most experimental conditions, transgenic line 3-8 performed best, while the responses obtained from lines 1-7 and 6-5 depended on the applied stimulus. To our knowledge, this is the first plant NAGS gene to be isolated, characterized, and genetically modified
Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials
Ni(OH)2 nanocrystals grown on graphene sheets with various degrees of
oxidation are investigated as electrochemical pseudocapacitor materials for
potential energy storage applications. Single-crystalline Ni(OH)2 hexagonal
nanoplates directly grown on lightly-oxidized, electrically-conducting graphene
sheets (GS) exhibit a high specific capacitance of ~1335F/g at a charge and
discharge current density of 2.8A/g and ~953F/g at 45.7A/g with excellent
cycling ability. The high specific capacitance and remarkable rate capability
are promising for applications in supercapacitors with both high energy and
power densities. Simple physical mixture of pre-synthesized Ni(OH)2 nanoplates
and graphene sheets show lower specific capacitance, highlighting the
importance of direct growth of nanomaterials on graphene to impart intimate
interactions and efficient charge transport between the active nanomaterials
and the conducting graphene network. Single-crystalline Ni(OH)2 nanoplates
directly grown on graphene sheets also significantly outperform small Ni(OH)2
nanoparticles grown on heavily-oxidized, electrically-insulating graphite oxide
(GO), suggesting that the electrochemical performance of these composites are
dependent on the quality of graphene substrates and the morphology and
crystallinity of the nanomaterials grown on top. These results suggest the
importance of rational design and synthesis of graphene-based nanocomposite
materials for high-performance energy applications.Comment: Published in JAC
Designing an Efficient Multimode Environmental Sensor Based on Graphene–Silicon Heterojunction
By exploiting the adsorbent gaseous molecules induced changes in intrinsic properties of graphene/silicon (Gr/Si) Schottky junction, the authors report a sensitive, low-power consuming, multimode environmental sensor. By combining an array of Gr/Si Schottky diodes with a differential amplifier circuit, the authors are able to not only differentiate the temperature coefficient and humidity sensing, but also monitor the sun-light exposure time. Our device is particularly sensitive toward humidity in both forward and reverse biased, and works in resistive as well as capacitive mode. Sensitivity of our devices reached to 17%, 45%, 26%, and 32% per relative humidity (%RH) for reverse biased, forward biased, resistive, and capacitive modes, respectively. In the reverse mode, the power consumption is as low as 2 nW. Moreover, our sensor response is highly selective, with sensitivity lower than 1% for other gases present in atmosphere including H, O, N, and CO. High sensitivity, low-power consumption, multiple operation modes, and high selectivity promises application of our sensor for industrial and home safety, environmental monitoring such as indoor and outdoor air conditions, process monitoring, and others
Measuring diversity in medical reports based on categorized attributes and international classification systems
<p>Abstract</p> <p>Background</p> <p>Narrative medical reports do not use standardized terminology and often bring insufficient information for statistical processing and medical decision making. Objectives of the paper are to propose a method for measuring diversity in medical reports written in any language, to compare diversities in narrative and structured medical reports and to map attributes and terms to selected classification systems.</p> <p>Methods</p> <p>A new method based on a general concept of f-diversity is proposed for measuring diversity of medical reports in any language. The method is based on categorized attributes recorded in narrative or structured medical reports and on international classification systems. Values of categories are expressed by terms. Using SNOMED CT and ICD 10 we are mapping attributes and terms to predefined codes. We use f-diversities of Gini-Simpson and Number of Categories types to compare diversities of narrative and structured medical reports. The comparison is based on attributes selected from the Minimal Data Model for Cardiology (MDMC).</p> <p>Results</p> <p>We compared diversities of 110 Czech narrative medical reports and 1119 Czech structured medical reports. Selected categorized attributes of MDMC had mostly different numbers of categories and used different terms in narrative and structured reports. We found more than 60% of MDMC attributes in SNOMED CT. We showed that attributes in narrative medical reports had greater diversity than the same attributes in structured medical reports. Further, we replaced each value of category (term) used for attributes in narrative medical reports by the closest term and the category used in MDMC for structured medical reports. We found that relative Gini-Simpson diversities in structured medical reports were significantly smaller than those in narrative medical reports except the "Allergy" attribute.</p> <p>Conclusions</p> <p>Terminology in narrative medical reports is not standardized. Therefore it is nearly impossible to map values of attributes (terms) to codes of known classification systems. A high diversity in narrative medical reports terminology leads to more difficult computer processing than in structured medical reports and some information may be lost during this process. Setting a standardized terminology would help healthcare providers to have complete and easily accessible information about patients that would result in better healthcare.</p
Diagnostic delay for giant cell arteritis – a systematic review and meta-analysis
Background Giant cell arteritis (GCA), if untreated, can lead to blindness and stroke. The study’s objectives were to (1) determine a new evidence-based benchmark of the extent of diagnostic delay for GCA and (2) examine the role of GCA-specific characteristics on diagnostic delay. Methods Medical literature databases were searched from inception to November 2015. Articles were included if reporting a time-period of diagnostic delay between onset of GCA symptoms and diagnosis. Two reviewers assessed the quality of the final articles and extracted data from these. Random-effects meta-analysis was used to pool the mean time-period (95% confidence interval (CI)) between GCA symptom onset and diagnosis, and the delay observed for GCA-specific characteristics. Heterogeneity was assessed by I 2 and by 95% prediction interval (PI). Results Of 4128 articles initially identified, 16 provided data for meta-analysis. Mean diagnostic delay was 9.0 weeks (95% CI, 6.5 to 11.4) between symptom onset and GCA diagnosis (I 2 = 96.0%; P < 0.001; 95% PI, 0 to 19.2 weeks). Patients with a cranial presentation of GCA received a diagnosis after 7.7 (95% CI, 2.7 to 12.8) weeks (I 2 = 98.4%; P < 0.001; 95% PI, 0 to 27.6 weeks) and those with non-cranial GCA after 17.6 (95% CI, 9.7 to 25.5) weeks (I 2 = 96.6%; P < 0.001; 95% PI, 0 to 46.1 weeks). Conclusions The mean delay from symptom onset to GCA diagnosis was 9 weeks, or longer when cranial symptoms were absent. Our research provides an evidence-based benchmark for diagnostic delay of GCA and supports the need for improved public awareness and fast-track diagnostic pathways
- …