241 research outputs found

    The LHCb Upgrade I

    Get PDF
    The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software

    Measurement of the Ξ<sup>-</sup><sub>b</sub> and Ω<sup>-</sup><sub>b</sub> baryon lifetimes

    Get PDF
    Using a data sample of pp collisions corresponding to an integrated luminosity of 3 fb−13~ \rm fb^{-1}, the Ξb−\Xi_b^- and Ωb−\Omega_b^- baryons are reconstructed in the Ξb−→J/ψΞ−\Xi_b^- \rightarrow J/\psi \Xi^- and Ωb−→J/ψΩ−\Omega_b^- \rightarrow J/\psi \Omega^- decay modes and their lifetimes measured to be \tau (\Xi_b^-) = 1.55\, ^{+0.10}_{-0.09}~{\rm(stat)} \pm 0.03\,{\rm(syst)} ps, \tau (\Omega_b^-) = 1.54\, ^{+0.26}_{-0.21}~{\rm(stat)} \pm 0.05\,{\rm(syst)} ps. These are the most precise determinations to date. Both measurements are in good agreement with previous experimental results and with theoretical predictions

    First observation and amplitude analysis of the B−→D+K−π− decay

    Get PDF
    The B−→D+K−π− decay is observed in a data sample corresponding to 3.0  fb−1 of pp collision data recorded by the LHCb experiment during 2011 and 2012. Its branching fraction is measured to be B(B−→D+K−π−)=(7.31±0.19±0.22±0.39)×10−5 where the uncertainties are statistical, systematic and from the branching fraction of the normalization channel B−→D+π−π−, respectively. An amplitude analysis of the resonant structure of the B−→D+K−π− decay is used to measure the contributions from quasi-two-body B−→D∗0(2400)0K−, B−→D∗2(2460)0K−, and B−→D∗J(2760)0K− decays, as well as from nonresonant sources. The D∗J(2760)0 resonance is determined to have spin 1

    First observation and amplitude analysis of the B- -> D+K-pi(-) decay

    Get PDF
    The B-→D+K-π- decay is observed in a data sample corresponding to 3.0 fb-1 of pp collision data recorded by the LHCb experiment during 2011 and 2012. Its branching fraction is measured to be B(B-→D+K-π-)=(7.31±0.19±0.22±0.39)×10-5 where the uncertainties are statistical, systematic and from the branching fraction of the normalization channel B-→D+π-π-, respectively. An amplitude analysis of the resonant structure of the B-→D+K-π- decay is used to measure the contributions from quasi-two-body B-→D0∗(2400)0K-, B-→D2∗(2460)0K-, and B-→DJ∗(2760)0K- decays, as well as from nonresonant sources. The DJ∗(2760)0 resonance is determined to have spin 1

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Measurement of the Difference of Time-Integrated CPAsymmetries in D0→K−K+ and D0→π−π+ Decays

    Get PDF
    A search for CP violation in D0→K−K+D^0 \rightarrow K^{-} K^{+} and D0→π−π+D^0 \rightarrow \pi^{-} \pi^{+} decays is performed using pppp collision data, corresponding to an integrated luminosity of 3 fb−13~fb^{-1}, collected using the LHCb detector at centre-of-mass energies of 7 and 8 8~TeV. The flavour of the charm meson is inferred from the charge of the pion in D∗+→D0π+D^{*+}\rightarrow D^0\pi^+ and D∗−→D0ˉπ−D^{*-}\rightarrow \bar{D^0}\pi^{-} decays. The difference between the CP asymmetries in D0→K−K+D^0 \rightarrow K^{-} K^{+} and D0→π−π+D^0 \rightarrow \pi^{-} \pi^{+} decays, ΔACP≡ACP(K−K+)−ACP(π−π+)\Delta A_{CP} \equiv A_{CP}(K^{-} K^{+}) - A_{CP}(\pi^{-} \pi^{+}), is measured to be (−0.10±0.08(stat)±0.03(syst))%\left( -0.10 \pm 0.08(stat) \pm 0.03(syst) \right) \%. This is the most precise measurement of a time-integrated CP asymmetry in the charm sector from a single experiment.Comment: All figures and tables, along with any supplementary material and additional information, are available at http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-055.htm

    Observation of Overlapping Spin-1 and Spin-3 D ÂŻ 0K- Resonances at Mass 2.86GeV /c2

    Get PDF
    • 

    corecore