136 research outputs found
Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine
In the field of predictive, preventive and personalised medicine, researchers are keen to identify novel and reliable ways to predict and diagnose disease, as well as to monitor patient response to therapeutic agents. In the last decade alone, the sensitivity of profiling technologies has undergone huge improvements in detection sensitivity, thus allowing quantification of minute samples, for example body fluids that were previously difficult to assay. As a consequence, there has been a huge increase in tear fluid investigation, predominantly in the field of ocular surface disease. As tears are a more accessible and less complex body fluid (than serum or plasma) and sampling is much less invasive, research is starting to focus on how disease processes affect the proteomic, lipidomic and metabolomic composition of the tear film. By determining compositional changes to tear profiles, crucial pathways in disease progression may be identified, allowing for more predictive and personalised therapy of the individual. This article will provide an overview of the various putative tear fluid biomarkers that have been identified to date, ranging from ocular surface disease and retinopathies to cancer and multiple sclerosis. Putative tear fluid biomarkers of ocular disorders, as well as the more recent field of systemic disease biomarkers, will be shown
The C Allele of rs5743836 Polymorphism in the Human TLR9 Promoter Links IL-6 and TLR9 Up-Regulation and Confers Increased B-Cell Proliferation
In humans, allelic variants in Toll-like receptors (TLRs) associate with several pathologies. However, the underlying cellular and molecular mechanisms of this association remain largely unknown. Analysis of the human TLR9 promoter revealed that the C allele of the rs5743836 polymorphism generates several regulatory sites, including an IL-6-responding element. Here, we show that, in mononuclear cells carrying the TC genotype of rs5743836, IL-6 up-regulates TLR9 expression, leading to exacerbated cellular responses to CpG, including IL-6 production and B-cell proliferation. Our study uncovers a role for the rs5743836 polymorphism in B-cell biology with implications on TLR9-mediated diseases and on the therapeutic usage of TLR9 agonists/antagonists
Phytochemicals as antibiotic alternatives to promote growth and enhance host health
There are heightened concerns globally on emerging drug-resistant superbugs and the lack of new antibiotics for treating human and animal diseases. For the agricultural industry, there is an urgent need to develop strategies to replace antibiotics for food-producing animals, especially poultry and livestock. The 2nd International Symposium on Alternatives to Antibiotics was held at the World Organization for Animal Health in Paris, France, December 12-15, 2016 to discuss recent scientific developments on strategic antibiotic-free management plans, to evaluate regional differences in policies regarding the reduction of antibiotics in animal agriculture and to develop antibiotic alternatives to combat the global increase in antibiotic resistance. More than 270 participants from academia, government research institutions, regulatory agencies, and private animal industries from >25 different countries came together to discuss recent research and promising novel technologies that could provide alternatives to antibiotics for use in animal health and production; assess challenges associated with their commercialization; and devise actionable strategies to facilitate the development of alternatives to antibiotic growth promoters (AGPs) without hampering animal production. The 3-day meeting consisted of four scientific sessions including vaccines, microbial products, phytochemicals, immune-related products, and innovative drugs, chemicals and enzymes, followed by the last session on regulation and funding. Each session was followed by an expert panel discussion that included industry representatives and session speakers. The session on phytochemicals included talks describing recent research achievements, with examples of successful agricultural use of various phytochemicals as antibiotic alternatives and their mode of action in major agricultural animals (poultry, swine and ruminants). Scientists from industry and academia and government research institutes shared their experience in developing and applying potential antibiotic-alternative phytochemicals commercially to reduce AGPs and to develop a sustainable animal production system in the absence of antibiotics.Fil: Lillehoj, Hyun. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Liu, Yanhong. University of California; Estados UnidosFil: Calsamiglia, Sergio. Universitat Autònoma de Barcelona; EspañaFil: Fernandez Miyakawa, Mariano Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Patobiología; ArgentinaFil: Chi, Fang. Amlan International; Estados UnidosFil: Cravens, Ron L.. Amlan International; Estados UnidosFil: Oh, Sungtaek. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Gay, Cyril G.. United States Department of Agriculture. Agricultural Research Service; Argentin
Challenging the heterogeneity of disease presentation in malignant melanoma-impact on patient treatment
There is an increasing global interest to support research areas that can assist in understanding disease and improving patient care. The National Cancer Institute (NIH) has identified precision medicine-based approaches as key research strategies to expedite advances in cancer research. The Cancer Moonshot program ( https://www.cancer.gov/research/key-initiatives/moonshot-cancer-initiative ) is the largest cancer program of all time, and has been launched to accelerate cancer research that aims to increase the availability of therapies to more patients and, ultimately, to eradicate cancer. Mass spectrometry-based proteomics has been extensively used to study the molecular mechanisms of cancer, to define molecular subtypes of tumors, to map cancer-associated protein interaction networks and post-translational modifications, and to aid in the development of new therapeutics and new diagnostic and prognostic tests. To establish the basis for our melanoma studies, we have established the Southern Sweden Malignant Melanoma Biobank. Tissues collected over many years have been accurately characterized with respect to the tumor and patient information. The extreme variability displayed in the protein profiles and the detection of missense mutations has confirmed the complexity and heterogeneity of the disease. It is envisaged that the combined analysis of clinical, histological, and proteomic data will provide patients with a more personalized medical treatment. With respect to disease presentation, targeted treatment and medical mass spectrometry analysis and imaging, this overview report will outline and summarize the current achievements and status within malignant melanoma. We present data generated by our cancer research center in Lund, Sweden, where we have built extensive capabilities in biobanking, proteogenomics, and patient treatments over an extensive time period
Comparative Transcriptional and Translational Analysis of Leptospiral Outer Membrane Protein Expression in Response to Temperature
Leptospirosis, caused by Leptospira spp., is a disease of worldwide significance affecting millions of people annually. Bacteria of this species are spread by various carrier animals, including rodents and domestic livestock, which shed the leptospires via their urine into the environment. Humans become infected through direct contact with carrier animals or indirectly via contaminated water or soil. Temperature is a key trigger used by many bacteria to sense changes in environmental conditions, including entry from the environment into the host. This study was the first comprehensive research into changes occurring in the outer membrane of Leptospira in response to temperature and how these changes correlate with gene expression changes. An understanding of the regulation and function of these proteins is important as they may provide an adaptation and survival advantage for the microorganism which may enhance its ability to infect hosts and cause disease. Our data suggest regulation of proteins in the outer membrane which may possibly be a mechanism to minimise interactions with the host immune response
Comprehensive genetic assessment of a functional TLR9 promoter polymorphism: no replicable association with asthma or asthma-related phenotypes
<p>Abstract</p> <p>Background</p> <p>Prior studies suggest a role for a variant (rs5743836) in the promoter of toll-like receptor 9 (TLR9) in asthma and other inflammatory diseases. We performed detailed genetic association studies of the functional variant rs5743836 with asthma susceptibility and asthma-related phenotypes in three independent cohorts.</p> <p>Methods</p> <p>rs5743836 was genotyped in two family-based cohorts of children with asthma and a case-control study of adult asthmatics. Association analyses were performed using chi square, family-based and population-based testing. A luciferase assay was performed to investigate whether rs5743836 genotype influences TLR9 promoter activity.</p> <p>Results</p> <p>Contrary to prior reports, rs5743836 was not associated with asthma in any of the three cohorts. Marginally significant associations were found with FEV<sub>1 </sub>and FVC (p = 0.003 and p = 0.008, respectively) in one of the family-based cohorts, but these associations were not significant after correcting for multiple comparisons. Higher promoter activity of the CC genotype was demonstrated by luciferase assay, confirming the functional importance of this variant.</p> <p>Conclusion</p> <p>Although rs5743836 confers regulatory effects on TLR9 transcription, this variant does not appear to be an important asthma-susceptibility locus.</p
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Comparative Genomics of 2009 Seasonal Plague (Yersinia pestis) in New Mexico
Plague disease caused by the Gram-negative bacterium Yersinia pestis routinely affects animals and occasionally humans, in the western United States. The strains native to the North American continent are thought to be derived from a single introduction in the late 19th century. The degree to which these isolates have diverged genetically since their introduction is not clear, and new genomic markers to assay the diversity of North American plague are highly desired. To assay genetic diversity of plague isolates within confined geographic areas, draft genome sequences were generated by 454 pyrosequencing from nine environmental and clinical plague isolates. In silico assemblies of Variable Number Tandem Repeat (VNTR) loci were compared to laboratory-generated profiles for seven markers. High-confidence SNPs and small Insertion/Deletions (Indels) were compared to previously sequenced Y. pestis isolates. The resulting panel of mutations allowed clustering of the strains and tracing of the most likely evolutionary trajectory of the plague strains. The sequences also allowed the identification of new putative SNPs that differentiate the 2009 isolates from previously sequenced plague strains and from each other. In addition, new insertion points for the abundant insertion sequences (IS) of Y. pestis are present that allow additional discrimination of strains; several of these new insertions potentially inactivate genes implicated in virulence. These sequences enable whole-genome phylogenetic analysis and allow the unbiased comparison of closely related isolates of a genetically monomorphic pathogen
The rs5743836 polymorphism in TLR9 confers a population-based increased risk of non-Hodgkin lymphoma
We are grateful to Paulo Vieira, Cecília Leão, Manuel T. Silva, Nuno Sousa, Jorge Correia-
Pinto, Joana Palha, Margarida Correia-Neves, Margarida Lima and Matthew Berry for all their
input throughout these studies and critical reading of the manuscript. We are grateful to the patients who joint this study as well as to all members of the Life and Health Sciences Research Institute and School of Health Sciences, University of Minho, who contributed in any way to the development of this workNon-Hodgkin lymphoma (NHL) has been associated with immunological defects, chronic inflammatory and autoimmune conditions. Given the link between immune dysfunction and NHL, genetic variants in toll-like receptors (TLRs) have been regarded as potential predictive factors of susceptibility to NHL. Adequate anti-tumoral responses are known to depend on TLR9 function, such that the use of its synthetic ligand is being targeted as a therapeutic strategy. We investigated the association between the functional rs5743836 polymorphism in the TLR9 promoter and risk for B-cell NHL and its major subtypes in three independent case-control association studies from Portugal (1160 controls, 797 patients), Italy (468 controls, 494 patients) and the US (972 controls, 868 patients). We found that the rs5743836 polymorphism was significantly overtransmitted in both Portuguese (odds ratio (OR), 1.85; P=7.3E-9) and Italian (OR, 1.84; P=6.0E-5) and not in the US cohort of NHL patients. Moreover, the increased transcriptional activity of TLR9 in mononuclear cells from patients harboring rs5743836 further supports a functional effect of this polymorphism on NHL susceptibility in a population-dependent manner.AC, NSO, MTC, and AJA were financially supported by a fellowship from Fundação para a Ciência e Tecnologia, Portugal. MS is a Ciência 2007 fellow. This study was supported by Fundação para a Ciência e Tecnologia, Portugal (PIC/IC/83313/2007) and by Fundação Calouste Gulbenkian, Serviço de Saúde e Desenvolvimento Humano, Portugal (Grant Number:Proc/60666-MM/734). CFS, PB and LC were supported by National Institutes of Health (NIH) grants CA122663 and CA104682, and PB also by NIH grants CA45614 and CA89745
Effective peer-to-peer support for young people with end-stage renal disease: a mixed methods evaluation of Camp COOL
__Abstract__
__Background__ The Camp COOL programme aims to help young Dutch people with end-stage renal disease
(ESRD) develop self-management skills. Fellow patients already treated in adult care
(hereafter referred to as ‘buddies’) organise the day-to-day program, run the camp, counsel
the attendees, and also participate in the activities. The attendees are young people who still
have to transfer to adult care. This study aimed to explore the effects of this specific form of
peer-to-peer support on the self-management of young people (16–25 years) with ESRD who
participated in Camp COOL (CC) (hereafter referred to as ‘participants’).
__Methods__ A mixed methods research design was employed. Semi-structured interviews (n = 19) with
initiators/staff, participants, and healthcare professionals were conducted. These were
combined with retrospective and pre-post surveys among participants (n = 62), and
observations during two camp weeks.
__Results__ Self-reported effects of participants were: increased self-confidence, more disease-related
knowledge, feeling capable of being more responsible and open towards others, and daring to
stand up for yourself. According to participants, being a buddy or having one positively
affected them. Self-efficacy of attendees and independence of buddies increased, while
attendees’ sense of social inclusion decreased (measured as domains of health-related quality
of life). The buddy role was a pro-active combination of being supervisor, advisor, and
leader.
__Conclusions__ Camp COOL allowed young people to support each other in adjusting to everyday life with
ESRD. Participating in the camp positively influenced self-management in this group. Peerto-
peer support through buddies was much appreciated. Support from young adults was not
only beneficial for adolescent attendees, but also for young adult buddies. Paediatric
nephrologists are encouraged to refer patients to CC and to facilitate such initiatives.
Together with nephrologists in adult care, they could take on a role in selecting buddies
- …