4,142 research outputs found

    Nonconservative Lagrangian mechanics II: purely causal equations of motion

    Full text link
    This work builds on the Volterra series formalism presented in [D. W. Dreisigmeyer and P. M. Young, J. Phys. A \textbf{36}, 8297, (2003)] to model nonconservative systems. Here we treat Lagrangians and actions as `time dependent' Volterra series. We present a new family of kernels to be used in these Volterra series that allow us to derive a single retarded equation of motion using a variational principle

    Role for the thromboxane A 2 receptor β-isoform in the pathogenesis of intrauterine growth restriction

    Full text link
    Intrauterine growth restriction (IUGR) is a pathology of pregnancy that results in failure of the fetus to reach its genetically determined growth potential. In developed nations the most common cause of IUGR is impaired placentation resulting from poor trophoblast function, which reduces blood flow to the fetoplacental unit, promotes hypoxia and enhances production of bioactive lipids (TXA 2 and isoprostanes) which act through the thromboxane receptor (TP). TP activation has been implicated as a pathogenic factor in pregnancy complications, including IUGR; however, the role of TP isoforms during pregnancy is poorly defined. We have determined that expression of the human-specific isoform of TP (TPβ) is increased in placentae from IUGR pregnancies, compared to healthy pregnancies. Overexpression of TPα enhanced trophoblast proliferation and syncytialisation. Conversely, TPβ attenuated these functions and inhibited migration. Expression of the TPβ transgene in mice resulted in growth restricted pups and placentae with poor syncytialisation and diminished growth characteristics. Together our data indicate that expression of TPα mediates normal placentation; however, TPβ impairs placentation, and promotes the development of IUGR, and represents an underappreciated pathogenic factor in humans

    Bacterial toxin-triggered release of antibiotics from capsosomes protects a fly model from lethal methicillin-resistant Staphylococcus aureus (MRSA) infection

    Get PDF
    Antibiotic resistance is a severe global health threat and hence demands rapid action to develop novel therapies, including microscale drug delivery systems. Herein, a hierarchical microparticle system is developed to achieve bacteria-activated single- and dual-antibiotic drug delivery for preventing methicillin-resistant Staphylococcus aureus (MRSA) bacterial infections. The designed system is based on a capsosome structure, which consists of a mesoporous silica microparticle coated in alternating layers of oppositely charged polymers and antibiotic-loaded liposomes. The capsosomes are engineered and shown to release their drug payloads in the presence of MRSA toxins controlled by the Agr quorum sensing system. MRSA-activated single drug delivery of vancomycin and synergistic dual delivery of vancomycin together with an antibacterial peptide successfully kills MRSA in vitro. The capability of capsosomes to selectively deliver their cargo in the presence of bacteria, producing a bactericidal effect to protect the host organism, is confirmed in vivo using a Drosophila melanogaster MRSA infection model. Thus, the capsosomes serve as a versatile multidrug, subcompartmentalized microparticle system for preventing antibiotic-resistant bacterial infections, with potential applications to protect wounds or medical device implants from infections

    Taking connected mobile-health diagnostics of infectious diseases to the field.

    Get PDF
    Mobile Health or mHealth - The application of mobile devices, their components and related technologies to healthcare is improving patients’ access to treatment and advice. Now, in combination with connected diagnostic devices it offers new possibilities to diagnose, track and control infectious diseases and improve health system efficiencies. In this context we look at these technologies and highlight their promise but also the challenges in realising their potential to increase patient access to testing, aid in their treatment and improve the capability of public health authorities to monitor outbreaks, implement responses, and assess the impact of interventions across the world

    Egg development, hatching rhythm and moult patterns in Paralomos spinosissima (Decapoda: Anomura: Paguroidea: Lithodidae) from South Georgia waters (Southern Ocean)

    No full text
    Larval release, hatching rhythms and moult patterns were examined in a captive population of the subantarctic lithodid, Paralomis spinosissima from the South Georgia and Shag Rocks region. Larvae hatched throughout the year with the majority of females starting to release larvae at the end of the austral summer and beginning of autumn. Larval release continued over a period of up to 9 weeks with high variability in the numbers that hatched each day. A similar seasonal pattern to hatching was evident in the moulting of females. Intermoult period for two adult females (CL = 63 and 85 mm) ranged from 894 to 1,120 days while an intermoult period for males was estimated to be in excess of 832 days. The results are consistent with other species of Paralomis and are discussed in relation to physiological and environmental adaptations to the cold-water conditions south of the Antarctic Convergence

    The complete mitochondrial genome of the pink sea fan, Eunicella verrucosa (Pallas, 1766).

    Get PDF
    This is the final version. Available from Taylor & Francis via the DOI in this record. The genome sequence data for this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov/nuccore/MW588805 under accession number MW588805.The pink sea fan, Eunicella verrucosa (Pallas, 1766), inhabits rocky substrates across the northeast Atlantic and the western Mediterranean. Across much of its range it has been detrimentally affected by fishing. DNA from 17 E. verrucosa specimens was amplified by phi29-induced rolling circle amplification. Following purification by sodium acetate-ethanol precipitation, the circular genomic DNA was sequenced on an Illumina MiSeq v2. Specimens originated from sites along the west coast of Ireland, southwest Wales, southwest/southern England, northwest France, southern Portugal, and the Mediterranean coast of northeast Spain. All samples had identical mitochondrial genome sequences of 19,267 bp and included 14 protein-coding genes (including the mutS gene), two ribosomal RNA subunits (12S and 16S) and one methionine tRNA gene. Two genes (nad2 and nad5) overlapped by 13 bp; all other genes were separated by non-coding intergenic regions. All protein-coding genes had the same start codon (ATG) and a TAA or TAG stop codon, except for cox1 that terminated with the incomplete stop codon T--. The mitochondrial genome of E. verrucosa (MW588805) showed 99.72% similarity with that of a related sea fan species, Eunicella cavolini, with six SNPs and a 49 bp deletion between nad5 and nad4 in E. verrucosa distinguishing the two.European Unio

    A Review of CAM for Procedural Pain in Infancy: Part I. Sucrose and Non-nutritive Sucking

    Get PDF
    There is increasing concern regarding the number of painful medical procedures that infants must undergo and the potential risks of alleviating infant pain with conventional pharmacologic agents. This article is Part I of a two-part series that aims to provide an overview of the literature on complementary and alternative (CAM) approaches for pain and distress related to medical procedures among infants up to six weeks of age. The focus of this article is a review of the empirical literature on sucrose with or without non-nutritive sucking (NNS) for procedural pain in infancy. Computerized databases were searched for relevant studies including prior reviews and primary trials. The most robust evidence was found for the analgesic effects of sucrose with or without NNS on minor procedural pain in healthy full-term infants. Despite some methodological weaknesses, the literature to date supports the use of sucrose, NNS and other sweetened solutions for the management of procedural pain in infancy

    Multi-omic data integration elucidates Synechococcus adaptation mechanisms to fluctuations in light intensity and salinity

    Get PDF
    Synechococcus sp. PCC 7002 is a fast-growing cyanobacterium which flourishes in freshwater and marine environments, owing to its ability to tolerate high light intensity and a wide range of salinities. Harnessing the properties of cyanobacteria and understanding their metabolic efficiency has become an imperative goal in recent years owing to their potential to serve as biocatalysts for the production of renewable biofuels. To improve characterisation of metabolic networks, genome-scale models of metabolism can be integrated with multi-omic data to provide a more accurate representation of metabolic capability and refine phenotypic predictions. In this work, a heuristic pipeline is constructed for analysing a genome-scale metabolic model of Synechococcus sp. PCC 7002, which utilises flux balance analysis across multiple layers to observe flux response between conditions across four key pathways. Across various conditions, the detection of significant patterns and mechanisms to cope with fluctuations in light intensity and salinity provides insights into the maintenance of metabolic efficiency
    • …
    corecore