222 research outputs found

    The Plasmodium falciparum, Nima-related kinase Pfnek-4: a marker for asexual parasites committed to sexual differentiation

    Get PDF
    <b>Background</b> Malaria parasites undergo, in the vertebrate host, a developmental switch from asexual replication to sexual differentiation leading to the formation of gametocytes, the only form able to survive in the mosquito vector. Regulation of the onset of the sexual phase remains largely unknown and represents an important gap in the understanding of the parasite's complex biology. <b>Methods:</b> The expression and function of the Nima-related kinase Pfnek-4 during the early sexual development of the human malaria parasite Plasmodium falciparum were investigated, using three types of transgenic Plasmodium falciparum 3D7 lines: (i) episomally expressing a Pfnek-4-GFP fusion protein under the control of its cognate pfnek-4 promoter; (ii) episomally expressing negative or positive selectable markers, yeast cytosine deaminase-uridyl phosphoribosyl transferase, or human dihydrofolate reductase, under the control of the pfnek-4 promoter; and (iii) lacking a functional pfnek-4 gene. Parasite transfectants were analysed by fluorescence microscopy and flow cytometry. In vitro growth rate and gametocyte formation were determined by Giemsa-stained blood smears. <b>Results:</b> The Pfnek-4-GFP protein was found to be expressed in stage II to V gametocytes and, unexpectedly, in a subset of asexual-stage parasites undergoing schizogony. Culture conditions stimulating gametocyte formation resulted in significant increase of this schizont subpopulation. Moreover, sorted asexual parasites expressing the Pfnek-4-GFP protein displayed elevated gametocyte formation when returned to in vitro culture in presence of fresh red blood cells, when compared to GFP- parasites from the same initial population. Negative selection of asexual parasites expressing pfnek-4 showed a marginal reduction in growth rate, whereas positive selection caused a marked reduction in parasitaemia, but was not sufficient to completely abolish proliferation. Pfnek-4- clones are not affected in their asexual growth and produced normal numbers of stage V gametocytes. <b>Conclusions:</b> The results indicate that Pfnek-4 is not strictly gametocyte-specific, and is expressed in a small subset of asexual parasites displaying high rate conversion to sexual development. Pfnek-4 is not required for erythrocytic schizogony and gametocytogenesis. This is the first study to report the use of a molecular marker for the sorting of sexually-committed schizont stage P. falciparum parasites, which opens the way to molecular characterization of this pre-differentiated subpopulation

    Physics in Riemann's mathematical papers

    Full text link
    Riemann's mathematical papers contain many ideas that arise from physics, and some of them are motivated by problems from physics. In fact, it is not easy to separate Riemann's ideas in mathematics from those in physics. Furthermore, Riemann's philosophical ideas are often in the background of his work on science. The aim of this chapter is to give an overview of Riemann's mathematical results based on physical reasoning or motivated by physics. We also elaborate on the relation with philosophy. While we discuss some of Riemann's philosophical points of view, we review some ideas on the same subjects emitted by Riemann's predecessors, and in particular Greek philosophers, mainly the pre-socratics and Aristotle. The final version of this paper will appear in the book: From Riemann to differential geometry and relativity (L. Ji, A. Papadopoulos and S. Yamada, ed.) Berlin: Springer, 2017

    Beliefs about others' intentions determine whether cooperation is the faster choice

    Get PDF
    Is collaboration the fast choice for humans? Past studies proposed that cooperation is a behavioural default, based on Response Times (RT) findings. Here we contend that the individual’s reckoning of the immediate social environment shapes her predisposition to cooperate and, hence, response latencies. In a social dilemma game, we manipulate the beliefs about the partner’s intentions to cooperate and show that they act as a switch that determines cooperation and defection RTs; when the partner’s intention to cooperate is perceived as high, cooperation choices are speeded up, while defection is slowed down. Importantly, this social context effect holds across varying expected payoffs, indicating that it modulates behaviour regardless of choices’ similarity in monetary terms. Moreover, this pattern is moderated by individual variability in social preferences: Among conditional cooperators, high cooperation beliefs speed up cooperation responses and slow down defection. Among free-riders, defection is always faster and more likely than cooperation, while high cooperation beliefs slow down all decisions. These results shed new light on the conflict of choices account of response latencies, as well as on the intuitive cooperation hypothesis, and can help to correctly interpret and reconcile previous, apparently contradictory results, by considering the role of context in social dilemmas

    Transition of plasmodium sporozoites into liver stage-like forms is regulated by the RNA binding protein pumilio

    Get PDF
    Many eukaryotic developmental and cell fate decisions that are effected post-transcriptionally involve RNA binding proteins as regulators of translation of key mRNAs. In malaria parasites (Plasmodium spp.), the development of round, non-motile and replicating exo-erythrocytic liver stage forms from slender, motile and cell-cycle arrested sporozoites is believed to depend on environmental changes experienced during the transmission of the parasite from the mosquito vector to the vertebrate host. Here we identify a Plasmodium member of the RNA binding protein family PUF as a key regulator of this transformation. In the absence of Pumilio-2 (Puf2) sporozoites initiate EEF development inside mosquito salivary glands independently of the normal transmission-associated environmental cues. Puf2- sporozoites exhibit genome-wide transcriptional changes that result in loss of gliding motility, cell traversal ability and reduction in infectivity, and, moreover, trigger metamorphosis typical of early Plasmodium intra-hepatic development. These data demonstrate that Puf2 is a key player in regulating sporozoite developmental control, and imply that transformation of salivary gland-resident sporozoites into liver stage-like parasites is regulated by a post-transcriptional mechanism

    A Genetically Hard-Wired Metabolic Transcriptome in Plasmodium falciparum Fails to Mount Protective Responses to Lethal Antifolates

    Get PDF
    Genome sequences of Plasmodium falciparum allow for global analysis of drug responses to antimalarial agents. It was of interest to learn how DNA microarrays may be used to study drug action in malaria parasites. In one large, tightly controlled study involving 123 microarray hybridizations between cDNA from isogenic drug-sensitive and drug-resistant parasites, a lethal antifolate (WR99210) failed to over-produce RNA for the genetically proven principal target, dihydrofolate reductase-thymidylate synthase (DHFR-TS). This transcriptional rigidity carried over to metabolically related RNA encoding folate and pyrimidine biosynthesis, as well as to the rest of the parasite genome. No genes were reproducibly up-regulated by more than 2-fold until 24 h after initial drug exposure, even though clonal viability decreased by 50% within 6 h. We predicted and showed that while the parasites do not mount protective transcriptional responses to antifolates in real time, P. falciparum cells transfected with human DHFR gene, and adapted to long-term WR99210 exposure, adjusted the hard-wired transcriptome itself to thrive in the presence of the drug. A system-wide incapacity for changing RNA levels in response to specific metabolic perturbations may contribute to selective vulnerabilities of Plasmodium falciparum to lethal antimetabolites. In addition, such regulation affects how DNA microarrays are used to understand the mode of action of antimetabolites

    A Genetic Screen for Attenuated Growth Identifies Genes Crucial for Intraerythrocytic Development of Plasmodium falciparum

    Get PDF
    A majority of the Plasmodium falciparum genome codes for genes with unknown functions, which presents a major challenge to understanding the parasite's biology. Large-scale functional analysis of the parasite genome is essential to pave the way for novel therapeutic intervention strategies against the disease and yet difficulties in genetic manipulation of this deadly human malaria parasite have been a major hindrance for functional analysis of its genome. Here, we used a forward functional genomic approach to study P. falciparum and identify genes important for optimal parasite development in the disease-causing, intraerythrocytic stages. We analyzed 123 piggyBac insertion mutants of P. falciparum for proliferation efficiency in the intraerythrocytic stages, in vitro. Almost 50% of the analyzed mutants showed significant reduction in proliferation efficiency, with 20% displaying severe defects. Functional categorization of genes in the severely attenuated mutants revealed significant enrichment for RNA binding proteins, suggesting the significance of post-transcriptional gene regulation in parasite development and emphasizing its importance as an antimalarial target. This study demonstrates the feasibility of much needed forward genetics approaches for P. falciparum to better characterize its genome and accelerate drug and vaccine development

    Transcription and Expression of Plasmodium falciparum Histidine-Rich Proteins in Different Stages and Strains: Implications for Rapid Diagnostic Tests

    Get PDF
    Background: Although rapid diagnostic tests (RDTs) for Plasmodium falciparum infection that target histidine rich protein 2 (PfHRP2) are generally sensitive, their performance has been reported to be variable. One possible explanation for variable test performance is differences in expression level of PfHRP in different parasite isolates. Methods: Total RNA and protein were extracted from synchronised cultures of 7 P. falciparum lines over 5 time points of the life cycle, and from synchronised ring stages of 10 falciparum lines. Using quantitative real-time polymerase chain reaction, Western blot analysis and ELISA we investigated variations in the transcription and protein levels of pfhrp2, pfhrp3 and PfHRP respectively in the different parasite lines, over the parasite intraerythrocytic life cycle. Results: Transcription of pfhrp2 and pfhrp3 in different parasite lines over the parasite life cycle was observed to vary relative to the control parasite K1. In some parasite lines very low transcription of these genes was observed. The peak transcription was observed in ring-stage parasites. Pfhrp2 transcription was observed to be consistently higher than pfhrp3 transcription within parasite lines. The intraerythrocytic lifecycle stage at which the peak level of protein was present varied across strains. Total protein levels were more constant relative to total mRNA transcription, however a maximum 24 fold difference in expression at ring-stage parasites relative to the K1 strain was observed. Conclusions: The levels of transcription of pfhrp2 and pfhrp3, and protein expression of PfHRP varied between different P. falciparum strains. This variation may impact on the detection sensitivity of PfHRP2-detecting RDTs

    Identification and Genome-Wide Prediction of DNA Binding Specificities for the ApiAP2 Family of Regulators from the Malaria Parasite

    Get PDF
    The molecular mechanisms underlying transcriptional regulation in apicomplexan parasites remain poorly understood. Recently, the Apicomplexan AP2 (ApiAP2) family of DNA binding proteins was identified as a major class of transcriptional regulators that are found across all Apicomplexa. To gain insight into the regulatory role of these proteins in the malaria parasite, we have comprehensively surveyed the DNA-binding specificities of all 27 members of the ApiAP2 protein family from Plasmodium falciparum revealing unique binding preferences for the majority of these DNA binding proteins. In addition to high affinity primary motif interactions, we also observe interactions with secondary motifs. The ability of a number of ApiAP2 proteins to bind multiple, distinct motifs significantly increases the potential complexity of the transcriptional regulatory networks governed by the ApiAP2 family. Using these newly identified sequence motifs, we infer the trans-factors associated with previously reported plasmodial cis-elements and provide evidence that ApiAP2 proteins modulate key regulatory decisions at all stages of parasite development. Our results offer a detailed view of ApiAP2 DNA binding specificity and take the first step toward inferring comprehensive gene regulatory networks for P. falciparum

    Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis

    Get PDF
    • …
    corecore