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Abstract

Many eukaryotic developmental and cell fate decisions that are effected post-transcriptionally involve RNA binding proteins
as regulators of translation of key mRNAs. In malaria parasites (Plasmodium spp.), the development of round, non-motile
and replicating exo-erythrocytic liver stage forms from slender, motile and cell-cycle arrested sporozoites is believed to
depend on environmental changes experienced during the transmission of the parasite from the mosquito vector to the
vertebrate host. Here we identify a Plasmodium member of the RNA binding protein family PUF as a key regulator of this
transformation. In the absence of Pumilio-2 (Puf2) sporozoites initiate EEF development inside mosquito salivary glands
independently of the normal transmission-associated environmental cues. Puf2- sporozoites exhibit genome-wide
transcriptional changes that result in loss of gliding motility, cell traversal ability and reduction in infectivity, and,
moreover, trigger metamorphosis typical of early Plasmodium intra-hepatic development. These data demonstrate that Puf2
is a key player in regulating sporozoite developmental control, and imply that transformation of salivary gland-resident
sporozoites into liver stage-like parasites is regulated by a post-transcriptional mechanism.
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Introduction

Puf (Pumilio and fem-3 mRNA binding factor) proteins are an

evolutionarily highly conserved family of proteins present from

yeast to humans and plants characterized by a highly conserved C-

terminal RNA-binding domain, composed of eight tandem

Pumilio (PUM) repeats. Puf proteins typically decrease expression

of targeted mRNAs by enhancing their decay or repressing their

translation [reviewed in 1]. The conserved biochemical features

and genetic function of Puf family members have emerged from

studies of model organisms and although Puf proteins have been

shown to play diverse functions, the one frequently shared

throughout evolution relates to the maintenance of stemness

[2,3,4] and control of differentiation [5,6,7].

The Plasmodium parasite alternates between mosquito vector and

vertebrate host, with transmission relying on highly specialized

parasite stages. Once inside the new host, developmental

progression quickly gives rise to fundamentally different parasite

forms adapted to their new environment [8]. For example, cell-

cycle arrested gametocytes, transmitted from the mammalian host

to the Anopheles vector during a mosquito blood meal, fertilize and

generate the motile ookinete in the mosquito midgut. Similarly, a

single slender, motile and cell-cycle arrested sporozoite, transmit-

ted by a mosquito bite, while inside a liver cell will develop into a

round, non-motile and replicating exo-erythrocytic form (EEF)

and go on to generate thousands of merozoites [9,10,11].

Developmental progression of both gametocytes and sporozoites

requires clear environmental cues; for gametocytes these include

xanthurenic acid and a drop in temperature [12], while

sporozoites need a rise in temperature and the presence of

bicarbonate [13,14,15].

The sudden transition between hosts that have very different

physiological environments requires a rapid molecular and cellular

re-programming, which may only be realized by parasites that are
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in a state of molecular preparedness, while maintaining a quiescent

state until transmission occurs. Indeed, successful development of

the mosquito-infective ookinete relies on the availability of

translationally repressed mRNAs previously transcribed in female

gametocytes in the blood stage, which are only translated following

fertilization [16,17], as well as stored proteins [18]. Although

suggested [19,20] it is unknown whether equivalent post-

transcriptional RNA-mediated events facilitate developmental

progression during the parasite’s exit from the mosquito and

initiation of EEF development in the mammalian host liver. Still,

Plasmodium sporozoites remain viable and transmission-competent

for weeks in mosquito salivary glands [21].

The roles of Puf (Pumilio and fem-3 mRNA binding factor)

proteins are diverse yet intimately involved in the post-transcrip-

tional regulation of developmental and differentiation factors in

organisms as diverse as yeast, Caenorhabdites elegans, Drosophila and

humans [22,23,24,25]. Two such proteins, Puf1 (PFE0935c) and

Puf2 (PFD0825c), are known in the human malaria parasite P.

falciparum [26,27,28], with orthologs in all Plasmodium species

characterized, including the rodent-infectious species P. berghei.

The Plasmodium Puf proteins have the typical highly conserved

organization that includes the eight tandem copies of the PUM

RNA binding domain (or Pumilio homology domain, PHD) at the

carboxyterminus of the protein (Fig. S1) and P. falciparum Puf2 was

shown to bind the Nanos Response Element RNA in vitro [26]. In

P. falciparum evidence has been reported for a role for Puf2 in

gametocyte development although puf2 is most highly transcribed

in sporozoites [28,29].

Here we provide strong evidence for an RNA-mediated

regulatory event in the rodent malaria parasite P. berghei that

relies on the RNA binding protein Pumilio 2 (PBANKA_071920)

to maintain salivary gland sporozoites in a stand-by mode prior to

transmission. The absence of the highly conserved protein

Pumilio-2 is necessary and sufficient to enable the slow and

progressive morphological transformation of P. berghei sporozoites

into EEF-like forms while still inside the lumen of the mosquito

salivary gland. This transformation is characteristic of EEFs both

functionally and in respect to their gene expression repertoire and

dissociates the transformation of sporozoites to EEF-like forms

from its requirement for environmental cues.

Results

puf2- P. berghei sporozoites undergo EEF-like
metamorphosis inside mosquito salivary glands

Similar to P. falciparum, both P. berghei puf orthologs (puf1,

PBANKA_123350 and puf2, PBANKA_071920) are not only

transcribed in gametocytes but also in salivary gland sporozoites

(SGS) (Fig. 1A, S3C). Antibodies raised against PbPuf2 confirmed

the expression of the protein in SGS and localized the protein to a

small number of discrete foci in the cytoplasm of the cell consistent

with the localization of most Puf proteins (Fig. 1B). To address the

roles of the two encoded proteins during parasite transmission we

generated transgenic P. berghei that lack either puf1 or puf2, or both

genes (Figs. S2–S4). All 3 gene deletion mutants (puf1-, puf2-,

puf1-/2-) showed normal growth and multiplication of asexual

blood stage parasites and in contrast to the reports for P. falciparum

produced gametocytes comparable in number to wild type

parasites; the transition of gametocytes into gametes and ookinete

formation was also not affected (Table S1). Furthermore oocyst

numbers per midgut and sporozoites reaching the salivary glands

were not significantly altered when compared to wild type

parasites (Fig. S5).

Together these data suggested that lack of either Puf1 or Puf2,

or both proteins has no, or at most very minor effects on the

majority of the different life cycle stages of P. berghei, including the

number of sporozoites reaching mosquito salivary glands.

However, microscopic examination of salivary gland 30 days after

mosquito infection revealed aberrant morphology of puf2-

parasites (Fig. 2; Videos S1 [wild type], S2 [puf1-], S3 [puf2-]).

Sporozoites of both independent puf2- mutants at day 22 after

mosquito infection and later, began to round up and progressively

resembled early hepatic stages (Fig. 2A, B; Fig. S6); by day 24 after

mosquito infection the majority of parasites in mosquito salivary

glands were morphologically similar to early EEF’s (76.4962.43%)

(Fig. 2C) with an average bulging area of 4.7260.42 mm2 that

increased to 6.0261.14 mm2 on day 30 of infection. The bulging

area of older puf2- parasites is comparable in size to 8–10 hours

liver stage EEF’s. On the other hand puf1- and wild type salivary

gland sporozoites (SGS) remained typically slender throughout the

entire period (Fig. 2). puf1-/2- parasites recapitulated the puf2-

single KO phenotype (Fig. S6).

18-day puf2- sporozoites are defective in motility, cell
traversal and infection

At day 18 puf2- sporozoites had reached the mosquito salivary

glands in similar numbers as puf1-, puf1-/2- and wild type parasites

(Fig. S5) and did not present obvious morphological changes.

Although superficially morphologically identical to wild type

sporozoites, 18 day puf2- SGS displayed significantly reduced

gliding motility and cell traversal ability when compared to puf1-

and wild type parasites (Fig. 3A, B; t-test p,0.05). Consequently,

puf2- SGS were less infective in vitro to Huh7 hepatoma cells

(Fig. 3C; t-test p,0.05) and parasites that had successfully invaded,

showed delayed development (Fig. 3D; t-test p,0.05). When we

compared parasite loads in mouse livers infected 44 hours earlier

after intra-venous injection of identical numbers (n = 10,000) of

day 18 puf1-, puf2- or wild type sporozoites we found a significant

impairment of liver infection by puf2- when either compared to

WT or puf1- parasites (Fig. 3E; t-test p,0.05). Ten days after i.v.

injection of SGS all mice infected with wild type and puf1- SGS

Author Summary

Injection of Plasmodium sporozoites by Anopheles mos-
quitoes into the human host initiates malaria infection.
Generation of blood stage parasites leading to the onset of
disease relies on the successful development of the
sporozoite into merozoites in the liver. Here we show
that in the rodent malaria model Plasmodium berghei these
developmental transformations are controlled by the RNA
binding protein Pumilio 2 (Puf2). In the absence of Puf2,
sporozoites, while still in the mosquito salivary gland,
slowly transform into early stage exo-erythrocytic form
parasites without the need for any environmental signals.
Morphologically precocious metamorphosis is character-
ized by the loss of the inner membrane complex and the
generation of clear protrusions which result in round liver
stage-like parasites. The transcriptional alterations are
consistent with developmental adaptations that occur
during sporozoite to liver stage-like developmental
progression. In total, 90% of up-regulated genes in mutant
parasites have only been identified in liver stage parasite
proteomes, but not the sporozoite proteome. Plasmodium
Puf2, a member of the Pumillo family known to be
involved in key developmental decisions in many different
organisms, acts as a clear regulator of life cycle progression
during sporozoite transmission from the mosquito vector
to the mammalian host.

Pumilio and Malaria Transmission
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developed blood stage parasitemia, while only 32% of the mice

infected with puf2- parasites did (Fig. 3F). During infection by

mosquito bite, blood stage parasites became patent only in mice

infected with wild type and puf1-, but never with puf2- parasites

(Fig. 3G). Although mice infected with puf1- SGS show a lower

parasite liver load than mice infected with WT SGS (Fig. 3E), no

differences were found in blood stage patency (Fig. 3F and G).

Throughout, the behavior of the puf1-/2- parasite was similar to

the puf2- parasite, which suggests that all defects are attributable to

the lack of Puf2, with no additional effects arising from the

simultaneous deletion of both genes (Table S2).

Transcriptome changes precede visible morphological
changes of puf2- sporozoites

The phenotypic analyses of day 18 puf2- SGS suggested that

premature de-differentiation of sporozoites could already have been

initiated prior to the visible manifestation of the morphological changes

evident in older parasites; we reasoned the absence of Puf2 might affect

the steady state transcriptome; intra-hepatic and axenic differentiation of

SGS into EEF’s is correlated with distinct transcriptome adaptations

[13,14,30]. Therefore we compared in 18-day SGS by RT-PCR (data

not shown) and RT-qPCR the expression profiles of genes known to be

transcribed in sporozoites, or in EEF’s but not in sporozoites (e.g. exp-2 -

PBANKA_133430 and exp-1 -PBANKA_092670) in comparison to

ama-1 (PBANKA_091500). Transcripts of the sporozoite genes gap45

(PBANKA_143760), myo-a (PBANKA_135570), spect2 (PBANKA_

100630), celtos (PBANKA_143230) and spect1 (PBANKA_135560) –

their protein products are important for gliding motility and cell

traversal [8] – were less abundant in puf2-; uis-4

(PBANKA_050120) showed no marked difference (Fig. 4A).

Conversely, the liver stage genes exp-1 and exp-2 (a constituent of

the PTEX translocon of exported PEXEL-containing proteins

[31]) were clearly more abundant in the absence of Puf2. uis-1/

ik2 (PBANKA_020580), a kinase reported to regulate transla-

tional capacity of salivary gland sporozoites [32] was also down-

regulated. Together these differences in mRNA indicated that the

changes in morphology of the older puf2- salivary gland parasite

are indeed preceded by changes in steady state mRNA levels in

superficially normal, younger SGS. The down-regulation of myo-

a, gap45, celtos, spect1 and spect2 could explain why day 18 puf2-

sporozoites are deficient in gliding motility as well as infection

(Fig. 3).

puf2- parasites in salivary glands show progressive
transcriptome changes

The RT-PCR data prompted the analysis of the global

transcriptome variations in puf2- sporozoites. We compared mRNA

levels obtained from both day 18 and day 27 wild type and puf2-

parasites by microarray hybridization using 3 biological replicates

from each time-point. In total, our analyses showed that in the

absence of Puf2, 267 genes were up-regulated (UR) at either days 18

or 27 or both, while 47 were down-regulated (DR) at least 1.5-fold

(F-test, p,0.05; Fig. 4B; Table S3A); these genes included those that

we initially identified in the RT-qPCR survey (Fig. 4C; Fig. S7).

Figure 1. puf mRNA expression and immunolocalization in P. berghei RFP+ salivary gland sporozoites. A, Relative and stage-specific
transcription levels of puf1 and puf2 in wild type parasites. puf1 and puf2 steady state mRNA levels were analyzed by RT-PCR using cDNA from highly
purified gametocytes and day 18 salivary gland (SG) sporozoites. Genomic DNA amplification is also provided, together with a map showing the
localisation of primers used for amplifying puf1 and puf2 and the different sizes to be expected in cDNA and genomic DNA. See also Fig. S3C for
Northern analysis of puf2 throughout parasite life cycle. B, Sporozoites tagged with red fluorescent protein (line 733cl1) were stained with anti-Puf2
peptide antibody 904 (top panel) and 905 (lower panel) revealing distinct cytoplasmic protein speckles. Scale bars = 10 mm.
doi:10.1371/journal.ppat.1002046.g001
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Our data indicate an overall increase in transcriptional activity

in mutant parasites which is suggested by the larger number of UR

versus DR genes (66 vs. 14 at day 18; 271 vs. 47 at day 27, on a

pairwise basis, p,0.05). Still, the DR transcript data set contains

genes that encode components of the inner membrane complex

and enzymes of the TCA cycle (Fig. S8), as well as genes with a

well-documented role in motility and invasion, reflecting the

observed functional deficiencies (see Fig. 3) in the puf2- parasites.

These genes include celtos, spect1, spect2, tlp1 (PBANKA_111600),

trsp (PBANKA_020910), siap1 (PBANKA_100620), mtrap (PBANKA_

051280), trep (PBANKA_130650), psop9/gama (PBANKA_070190),

gap45, and p36p (PBANKA_100220; Table S3B); another 10

conserved, but uncharacterized Plasmodium proteins that contain a

signal peptide, trans-membrane domain(s) or GPI anchor are also

DR, maybe indicating a function during the hepatocyte invasion

process.

On the other hand, UR genes fit in the categories of DNA

metabolic processes, ribonucleoprotein complex, ribosome/trans-

lation and protein folding (Fig. S8). Of the 7 differentially

expressed transcription factors found 6 are UR and include

TFIIH (PBANKA_141340), the RNA polymerase II subunit

(PBANKA_020330), 2 putative transcription factors (AP2’s,

PBANKA_083520 and PBANKA_010950), and 2 TFIIS Zinc-

fingers (PBANKA_030420 and PBANKA_142110; Table S2C);

concomitantly mRNA capping and splicing factors, and genes

involved in ribosomal and transfer RNA processing (n = 16) are

almost exclusively UR (Table S2D). Throughout, translation

factors and ribosomal proteins (n = 52; Table S3E) are UR in puf2-,

Figure 2. puf2- parasites transform into early liver stage EEF’s in mosquito salivary glands. A, maximum projection of a z-series scan of
infected mosquito salivary glands on day 30 of mosquito infection. B, Development of salivary gland-resident parasites from day 18 to day 30 after
mosquito infection; puf2- undergo exo-erythrocytic liver stage metamorphosis with bulging visible at day 22 and complete transformation at day 30.
C, Proportion of sporozoites versus EEF-like’s of wild type, puf1- and puf2- parasites in mosquito SG’s during 13 days of salivary gland infection. Scale
bars = 10 mm.
doi:10.1371/journal.ppat.1002046.g002

Figure 3. Functionality and liver stage infectivity of wild type and mutant sporozoites. A, 36104 sporozoites were allowed to glide on
cover slips pre-coated with anti-circumsporozoite protein (CSP) antibody for 40 minutes at 37uC. The number of parasites associated with CSP trails is
a measure of gliding motility ability. B, Dextran tetramethylrhodamine was added to Huh7 cells before sporozoite addition. Two hours p.i. the
number of traversed cells (Dextran+) was quantified by fluorescence-activated cell sorting. C, Huh7 cells fixed and double-stained with anti-CSP
antibody to distinguish extracellular from intracellular sporozoites after a 2-hour incubation with 36104 sporozoites. D, EEF development 48 h after
addition of sporozoites to Huh7 cells. EEF areas were quantified with Image J of fluorescence microscopy images. For Figure 3A-D, n = 3.
E, Plasmodium liver load 44 h after intravenous injection of 16104 sporozoites; parasite load measured by qRT-PCR of P. berghei 18S rRNA normalized
to hypoxanthine-guanine phosphoribosyltransferase. Five C57Bl/6 mice per group. F, Appearance of blood parasitaemia following infection of C57Bl/
6 with 16104 intravenously injected sporozoites (wild type n = 10 mice; puf1- n = 10; puf2- n = 25). G, Appearance of blood parasitaemia after
mosquito bite (wild type n = 4 mice; puf1- n = 8; puf2- n = 10). All experiments used sporozoites 18 days after mosquito infection. T-test * p,0.05;
** p,0.01. All data show mean6SD.
doi:10.1371/journal.ppat.1002046.g003
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Figure 4. Transcriptional changes in puf2-. A, Quantitative RT-PCR analysis was done on cDNA from wild type and puf2- salivary gland
sporozoites (SGS) at day 18 after mosquito infection. B, Heatmap of expression changes measured by microarray analysis for .300 genes in wild type
and puf2- at days 18 and 27 after mosquito infection. Expression values are scaled up to the rows and range from -3 (blue) to +3 (red). C, Correlation
analysis of quantitative RT-PCR and microarray results.
doi:10.1371/journal.ppat.1002046.g004
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while ik2 (a negative regulator of translation through phosphory-

lation of eIF2a) is DR, consistent with the observed increase in

protein translation in IK2 null mutant sporozoites [32]. In parallel,

many chaperones (n = 17; Table S3F) and genes with protein

transport-related functions (n = 29; Table S3G) are UR; these

include for example plasmepsin V (PBANKA_133870) – the PEXEL-

motif cleaving enzyme– and exp2 [31,33]. 14 genes linked to the

ubiquitin-proteasome system are UR at day 27 in puf2- parasites

(Table S3H) which supports an involvement in the observed

elimination of rhoptries and micronemes during metamorphosis

[34]. Additional UR genes in the puf2- mutant include mitochon-

drial and fatty acid synthesis genes (Table S3I and J). Finally we

observe an increase in replication factors, rad51 (PBANKA_093950),

histone h2b (PBANKA_094180) and alba-3 (PBANKA_120440;

n = 17, Table S3K).

In summary, the microarray analysis emphasizes genes involved

in increased metabolic activity to be UR in EEF-like mutant

parasites. The comparison between wild type SGS from days 18

and 27 post-mosquito infection on the other hand showed almost

no transcriptome alterations. Only 6 and 16 genes, respectively,

were UR or DR out of the total of approximately 5400 P. berghei

genes; none of them however significantly (moderated t-test

p.0.05; Table S3A). This clearly suggests that the wild type

parasites’ quiescent yet infective status with respect to transcription

and mRNA abundance is maintained for at least 10 days while

residing in the mosquito salivary gland. A comparison with the

sporozoite and EEF proteomes of the related, rodent malaria

species P. yoelii [35] showed that 89.7% (96/107) of UR P. berghei

mRNAs in puf2- sporozoites (at day 18 and 27) are indeed detected

only in P. yoelii liver stage parasites but not in SGS, corroborating

the notion that puf2- sporozoites in fact resemble genuine, early

liver stage parasites (Table S3A).

puf2- parasites in salivary glands exhibit ultrastructural
features of early stage EEFs

Further evidence of the genuine nature of older puf2- parasites

as early liver stage parasites arose from ultrastructural studies. The

bulge formation in the center of parasite is a hallmark of the initial

differentiation process during hepatic development. Importantly, it

has been shown to coincide with a loss of the inner membrane

complex (IMC) associated with motility and rounding-up [34].

When we analyzed wild type and puf2- P. berghei by EM we found a

clear sign of IMC disruption in day 27 puf2- parasites (Fig. 5) but

not in day 18 puf2- SGS (Fig. S9). Neither wild type nor puf1-

showed any signs of IMC impairment (Fig. 5). The resulting

protrusions mark the beginning of sporozoite differentiation into

liver stage trophozoites and occur approximately 4 hours after

liver cell infection, following degradation of IMC components [34]

such as Alveolin 9 (PBANKA_124060) or MyoA. All these changes

in puf2- SGS further confirm the profound developmental switch

in response to the lack of Puf2.

Plasmodium sporozoite transformation into EEFs is
protein translation dependent

Overall, our data show that Puf2 is a master regulator of

Plasmodium developmental control during transmission from the

mosquito vector to the mammalian host. The highly conserved

nature of the Pumilio homology domain (PHD) of the Plasmodium

proteins [27] (Fig. S1), its conserved function in many different

organisms [5,22,36,37,38], the capacity of P. falciparum Puf2 to

bind RNA in vitro [26] and its localization to few cytoplasmic

speckles in P. berghei sporozoites (Fig. 1B) strongly suggested that

sporozoite latency in Anopheles salivary glands relies on the

control of protein translation through a post-transcriptional

mechanism.

The notion that SGS to EEF transformation is dependent on de

novo protein synthesis was supported by the ability of cyclohexi-

mide (a general protein synthesis inhibitor) to significantly reduce

the metamorphosis of wild type SGS into EEF-like parasites

(Fig. 6A) in an established in vitro transformation assay [15]. In this

assay, sporozoites transform into EEF-like parasites within 1–2 h

when placed at a temperature of 37uC (Fig. 6A). Importantly,

comparison of transformation of WT and puf-2 sporozoites

showed that puf-2 parasites produced almost twice as many early

EEF’s compared to WT after 4 h incubation at 37uC in a

cycloheximide-insensitive manner (Fig. 6B). This result implies

that, in puf2- parasites, proteins required for SGS transformation

into EEF-like parasites have already been produced by day 18 of

mosquito infection. Indeed, Western blots performed with 18 day

wild type and mutant SGS showed that transformation-associated

changes in protein level had already occurred (Fig. 6C): proteins

involved in sporozoite motility (MyoA) or IMC maintenance

(Alveolin 9) are clearly less abundant in mutant SGS whilst

proteins typical of EEF development (Exp1 and Exp2) are readily

detected prior to any morphological changes.

Our data clearly show that Plasmodium sporozoite transforma-

tion into EEFs is protein synthesis dependent, and sporozoite

quiescence relies on post-transcriptional control and the RNA

binding protein Puf2.

Discussion

Following the mosquito blood meal, sporozoites that manage to

invade a host hepatocyte quickly initiate differentiation into liver

stage trophozoites; these early changes are characterized by a de-

differentiation process that involves loss of the inner membrane

complex, protrusions in the region of the parasites nucleus and loss

of internal organelles [34]. A single parasite ultimately multiplies

by a factor of a few 1000-fold within 48 hours in P. berghei to give

rise to first generation merozoites. Plasmodium development in the

liver is accompanied by clear host cell transcriptional changes and

adaptations that reflect the parasite’s needs [39]; these include

generation and maintenance of the parasitophorous vacuole, the

export of proteins such as circumsporozoite protein (CS) into the

host cytoplasm [40] and possibly uptake of exogenous lipids [41],

replication and differentiation to form merozoites.

On the other hand, the transcription of Plasmodium genes

essential for full intra-hepatic development is triggered by a

temperature shift and contact with host cells [13,14]. Transfor-

mation into early EEF’s can to some degree be recapitulated in

the absence of host cells; for this, wild type SGS require merely

the presence of serum or bicarbonate and a temperature shift

from the mosquito’s body temperature (<21uC) to the mamma-

lian host’s 37uC [13,15]. However, our data clearly show that in

the absence of the RNA binding protein Puf2, initiation of

sporozoite to EEF metamorphosis takes place inside mosquito

salivary glands without the need for environmental cues received

during transmission from the mosquito vector to the mammalian

host. Although the morphological changes observed at the light-

microscope level could be interpreted as resulting from non-

specific degenerative processes, our data on specific transcrip-

tional changes, changes in protein synthesis and ultrastructural

features indicate that the phenotype of puf2- SGS is the result of a

specific differentiation process into EEFs. Indeed, the alterations

in transcription, protein expression and ultrastructural features in

puf2- sporozoites match those occurring in early liver stage forms

[30,42] and are not easily reconciled with random degenerative
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processes. Importantly, the cellular and molecular events leading

to the metamorphosis of puf2- SGS into early hepatic stages occur

prior to any apparent morphological changes, as shown by the

loss of infectivity of puf2- SGS before any morphological changes

are manifest.

In many organisms, Puf proteins inhibit translation of

specifically recognized mRNAs (generally a small number), either

by repressing their translation or enhancing decay [1]. Consistent

with this conserved biological function, we show that Plasmodium

Puf2 is localized to few cytoplasmic speckles and possesses a highly

conserved Pumilio homology domain (PHD). Together with our

transcriptional analyses, these data strongly suggest that Puf2 is

regulating the translational efficiency of one or several unknown

key factor(s); we hypothesize that once translationally activated

such proteins quickly direct the developmental progression from

SGS to early hepatic stages.

Figure 5. Ultrastructural evidence of puf2- parasites transforming into early liver stage EEFs in A. stephensi mosquito salivary
glands. Transmission electron microsocopy of 29-day salivary gland parasites showing the presence of slender-shaped, wild type and puf1-
sporozoites with outer plasma membrane (PM) and entirely intact, inner membrane complex (IMC). puf2- salivary gland parasites developing into
early EEFs show clear IMC disruption in the bulging region (arrows). Left pictures: longitudinal sections; right picture: transversal sections. Scale
bars = 1 mm.
doi:10.1371/journal.ppat.1002046.g005
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Recently, the sporozoite’s latency status was reported to rely on

mechanisms akin to mammalian and yeast stress granule formation

with a phosphorylation dependent inhibition of protein translation

[32]. Absence of eIF2a phosphorylation in a mutant lacking

expression of the PBIK2 protein–the pbik2 gene was originally

identified as upregulated in sporozoites 1 or uis1 [43]–was shown to result

in an approximately 2-fold increase in translation as measured by
35S-Met/Cys incorporation in sporozoites at 25uC, and 3-fold at

37uC. However, close observation of ik2- parasites in Anopheles

salivary glands revealed that only 11.668% parasites show signs of

transformation by day 30 of infection, while more than 99% of puf2-

parasites are already fully rounded up by that time (Fig. S10). Thus,

despite a significant increase in protein translation in the absence of

PBIK2, pbik2- sporozoites do not initiate the program of transfor-

mation as significantly as puf2- sporozoites. This difference in

phenotype could be explained by a dominant role of Puf2 in binding

to essential mRNAs repressing their translation into proteins that are

needed for the transformation program to occur; in our proposed

model (Fig. 7), we speculate the absence of Puf2 is consistent with the

translation of these essential transcripts thereby triggering premature

metamorphosis. This may alleviate the translational repression

promoted by IK2 [32], perhaps involving protein phosphatase 2C

(PBANKA_091340) [44] which is strongly up-regulated in puf2-

parasites at day 18 of mosquito infection (Table S3L). Although we

have very limited data on proteome changes in the puf2- parasites,

our Western analyses indicate that changes (both up and down) in

steady state protein levels do occur. It remains unclear whether Puf2

independent translation is mediated through eIF2a, although ik2 is

already significantly decreased in puf2- parasites and protein

phosphatase activity might be increased by day 18 of infection.

At present the nature of the mRNAs directly regulated by Puf2

are unknown; an exploratory MEME analysis of DR transcripts

identified at all time points was inconclusive, most likely due to the

fact that both the consensus Pumilio recognition motif

Figure 6. Plasmodium sporozoite transformation into EEF-like form is protein translation dependent. A, Wild type 18 day SGS were
incubated at 37uC or room temperature (RT) for 2 h and 4 h and with or without the presence of cycloheximide (CHD, 100 mg/ml) as indicated.
Transformation of WT SGS into EEF-like in vitro is more pronounced at 37uC for 4 h and relies on protein translation. T-test ** p,0.01. All data show
mean6SD. B, WT and puf2- 18 day SGS were incubated at 37uC for 4 h with and without the presence of cycloheximide (CHD, 100 mg/ml) as
indicated, showing that transformation of puf2- sporozoites does not rely on protein translation. C, Protein expression in puf2- and wild type SGS, 18
days after infection.
doi:10.1371/journal.ppat.1002046.g006
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(UGUAAA/UAU) and untranslated regions of P. berghei mRNAs

are extremely AU-rich; out of the 374 transcripts detected to be

significantly de-regulated in the puf2 gene deletion mutant, 106

have at least 1 NRE (Nanos Response Element) within 400

nucleotides of the stop codon. Statistically, there is no enrichment

for NRE’s in up or down-regulated genes (chi-square, df = 1,

p = 0.2238; Table S3N) with the important caveat that actual 39

UTRs have rarely been mapped in P. berghei; hence these bio-

informatic results are very speculative and identified NRE’s may

not exist in mature mRNAs. Nonetheless, Puf2 clearly maintains

SGS on a ‘‘stand-by’’, quiescent mode until they have invaded

mammalian host hepatocytes where they expand into first-

generation, blood-infectious merozoites. Thus, Puf2 constitutes a

key player in the developmental control during a critical time-

point of the Plasmodium life cycle, the malaria parasites’

transmission from the invertebrate to the vertebrate host.

Altogether, and considering the highly conserved nature of PUFs,

this shows that post-transcriptional events are central to the major

developmental switches that are associated with host transition

during the Plasmodium life cycle.

Materials and Methods

Laboratory animals
This study was carried out in strict accordance with the

recommendations of both the Animal Experiment Committees

governed by section 18 of the Experiments on Animals Act and

registered by the Dutch Inspectorate for Health, Protection and

Veterinary Public Health (Ministry of Health, Welfare and Sport),

and the Portuguese official Veterinary Directorate, which complies

with the Portuguese Law (Portaria 1005/92). The Dutch and

Portuguese Experiments on Animal Act strictly comply with the

European Guideline 86/609/EEC and follow the FELASA

(Federation of European Laboratory Animal Science Associations)

guidelines and recommendations concerning laboratory animal

welfare. In The Netherlands, all animal experiments were approved

by the Animal Experiments Committee of the LUMC (ADEC). In

Portugal, all animal experiments were approved by the Portuguese

official veterinary department for welfare licensing and the IMM

Animal Ethics Committee. All experiments were carried out using

Swiss-OF1 female mice (OF1-ico, Construct 242; age 6 weeks old,

Charles River Laboratories International, Inc), C57Bl/6 and

BALB/c mice (6–8 weeks of age; Harlan Laboratories, Inc. or

Charles River Laboratories International, Inc). All efforts were

made to ensure minimal suffering to the animals.

Generation of puf1 (gene model PBANKA_123350), puf2
(gene model PBANKA_071920) and puf1/puf2 P. berghei
gene deletion mutants

puf1 and puf2 were targeted for disruption by standard double-

crossover homologous recombination with linearized targeting

plasmids. Transfection and drug selection of mutant parasites was

performed using standard technology of genetic modification

developed for P. berghei [45,46]. Cloned parasite lines were obtained

Figure 7. Proposed model for Puf2-mediated regulation of Plasmodium developmental progression during transmission from the
mosquito vector to the mammalian host. In the mosquito Puf2 controls the translation of key protein(s). In its absence, this(ese) proteins are
translated and sporozoites initiate transformation into the round EEF, which only occurs in the mammalian host in wild-type parasites.
doi:10.1371/journal.ppat.1002046.g007
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by limiting dilution. Plasmid integration into the genome was

verified by Southern analysis of separated chromosomes and

diagnostic PCR; the absence of transcript was confirmed by

Northern analysis. For details of vectors, targeting regions, and

primers used see Figs. S2 and S3, as well as Tables S4-7. Plasmids

pL0001 and pL0035 can be obtained from http://www.mr4.org.

Details for all Rodent Malaria genetically modified P. berghei lines

used in this study can be found in the RMgm database (http://

www.pberghei.eu).

For puf1 gene deletion, PCR-amplified 59 and 39 targeting

regions were cloned into plasmid pL0001 yielding pAB60

(containing the pyrimethamine tgdhfr/ts selection marker), or

plasmid pL0035 yielding pL1214 (containing the pyrimeth-

amine/5-fluorocytosine hdhr/yfcu positive/negative selection mark-

er). Mutant 351cl1 (pAB60; puf1-a; RMgm-513) was generated in

the GFP-reference line cl15cy1 [45], mutant 900m2cl3 (pL1214;

puf1-b; RMgm-514) was generated in the GFP+ reference line

507cl1 (RMgm-7 at http://www.pberghei.eu).

The selection cassette (hdhfr/yfcu) in 900m2cl3 was removed by

negative selection [47]; four mice infected with parent population

900 were treated with 5-fluorocytosine (5-FC) at a parasitemia of

0.1–0.5% with a single, daily 20 mg/ml dose (0.5 ml) for a period of

4 days. Resistant parasites were collected at days 5–7 and analyzed

by diagnostic Southern analysis to confirm removal of the drug-

selectable marker hdhfr/yfcu by a recombination event between the

two 39-dhfr-ts sequences (Fig. S2). A PCR amplified fragment of the

39-dhfr-ts region was used for Southern analysis (the primer

sequences are provided in Table S5). Parasites from mouse 2 were

cloned by limiting dilution, resulting in mutant 900m2cl3 (puf1-b).

For puf2 gene deletion, PCR-amplified 59 and 39 targeting

regions were cloned into plasmid pL0001 yielding pAB70

(containing the pyrimethamine tgdhfr/ts selection marker), or

plasmid pL0006 yielding pL1317 (containing the pyrimethamine

hdhfr selection marker). Mutant 375cl1 (pAB70; puf2-a; RMgm-

515) was generated in the GFP-reference line cl15cy1 [45], mutant

1267cl2 (pL1317; puf2-b; RMgm-516) was generated in the GFP+
reference line 507cl1 (RMgm-7 at http://www.pberghei.eu).

The following probes were used for Southern analysis: PCR-

amplified fragments for the hdhfr and tgdhfr-ts genes (for primer

sequences see Table S7) and a puf2 sequence consisting of the

0.4 kb EcoRI/HincII puf2 fragment; in puf2- this part is deleted.

In experiment 1081 we generated a mutant line in which both

puf1 and puf2 were deleted. To generate mutant 1081cl1 (puf1-/2-;

RMgm-591) the selectable marker cassette hdhfr-yfcu was first

removed from mutant 900 (puf1-b) by negative selection essentially

as described [47]. In brief, 4 mice infected with mutant 900 were

treated with 5-fluorocytosine (5-FC) starting at a parasitemia of

0.1–0.5% with a daily single dose of 0.5 ml of a solution of 20 mg/

ml day for a period of 4 days. Resistant parasites were collected

between days 5–7 after start of the 5-FC treatment and the

genotype analyzed by diagnostic Southern analysis to confirm

removal of the drug-selectable marker hdhfr-yfcu by a recombina-

tion event between the two 39 pbdhfr/ts sequences (Fig. S2).

Parasites from one of the four mice (mouse 2) that had been

treated with 5-FC were cloned by limiting dilution, resulting in

mutant 900m2cl3 (puf1-b). Parasites of line 900m2cl3 were then

transfected with vector pL1317 for disruption of puf2 (Fig. S3).

Selection and cloning of transformed parasites resulted in mutant

1081cl1 (puf1-/2-) in which both pumilio genes are disrupted.

Gene expression analysis by Northern blot and RT-PCR
Total RNA was isolated from blood stage parasites from

asynchronous and synchronized infections [48] and analyzed by

Northern hybridization. Northern blots were hybridised with puf1

and puf2 PCR-amplified fragments (for primer sequences see

Tables S5 and S7). As loading control, blots were hybridized with

p28 (PBANKA_051490) or with primer L644R specific for the

blood stage, large subunit ribosomal RNA [49].

For RT-PCR, total RNA was isolated from highly purified

gametocytes and day 18 and 27 sporozoites and reverse

transcribed with hexamers and oligo d(T) oligonucleotides;

primers were 479 and 480 for puf1, and 477 and 478 for puf2, in

both cases spanning an intron (Table S8).

Asexual growth rate, gametocytogenesis and
gametogenesis

The in vivo multiplication rate of asexual blood stage parasites

was determined during the cloning procedure and calculated as

follows: the percentage of infected erythrocytes in Swiss OF1 mice

injected with a single parasite is determined at day 8 to 11 by

counting Giemsa stained blood films; the mean asexual multipli-

cation rate per 24 h is then calculated assuming a total of

1.261010 erythrocytes per mouse (2 ml of blood). The percentage

of infected erythrocytes in mice infected with wild type reference

lines of the P. berghei ANKA strain typically ranges between 0.5–

2% at day 8 after infection, resulting in a mean multiplication rate

of 10 per 24 h [50,51].

Gametocyte and gamete production were determined following

standardized conditions [48]. Gametocyte production is defined as

the Gametocyte Conversion Rate which is the percentage of ring

forms that develop into mature gametocytes in synchronized

infections in mice treated with phenylhydrazine. Male gamete

formation is defined as the percentage of male gametocytes that

form gametes after in vitro induction by exflagellation; exflagellat-

ing male gametocytes are counted in a Bürker cell counter 15 to 20

minutes after induction. Female gamete formation is defined as the

percentage of female gametocytes that emerge from the red blood

host cells after in vitro induction of gametogenesis; free female

gametes were counted in Giemsa stained smears made 20 minutes

after induction. The fertility of wild type and mutant gamete

populations was analysed by standard in vitro fertilisation and

ookinete maturation assays [52,53] from highly pure gametocyte

populations [54]; the fertilisation rate of gametes is defined as the

percentage of female gametes that develop into mature ookinetes

determined by counting female gametes and mature ookinetes in

Giemsa stained blood smears 16–18 h after in vitro induction.

Human hepatoma cell line Huh7. Huh7 cells were cultured in

RPMI medium supplemented with 10% fetal calf serum (FCS),

1% non-essential amino acids, 1% penicillin/streptomycin, 1%

glutamine and 10 mM Hepes, pH 7 and maintained at 37uC with

5% CO2. All consumables were obtained from Gibco/Invitrogen.

Anopheles stephensi mosquito maintenance
A. stephensi were bred at the insectary of the Instituto de

Medicina Molecular (IMM). All life cycle associated experiments

(mosquito infection, in vitro Huh7 infection, in vivo mouse infection)

presented in this paper were performed with GFP+ puf1- clone

900m2cl3 and puf2- clone 1267cl2 and confirmed with GFP- puf1-

351cl1 and puf2- 375cl1.

Anopheles stephensi mosquito infection and analysis of
parasite development

16106 infected red blood cells of P. berghei wild type (259cl2;

RMgm-5; GFP+) [52] and mutant lines, puf1-and puf2- were

intraperitoneally injected in BALB/C mice . Four to 5 days later,

when at least one exflagellation event was observed per

microscope field, mosquitoes were allowed to feed on anaesthe-
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tized mice for 0.5–1 h on two consecutive days. At day 10 post

blood meal, 9 infected midguts were removed and the number of

oocysts per midgut determined by fluorescence microscopy.

Parasites per salivary gland (SG) were quantified in 3 independent

transmission experiments in which 9 infected mosquitoes per

experiment, from 19 to 22 days after mosquito infection for each

genotype, were dissected; three groups of 3 SGs for each

experiment for each genotype were smashed and the number of

parasites per SG quantified in a Neubauer chamber.

Quantification and morphological analyses of mutant
sporozoites

Three A. stephensi SGs infected with wild type, puf1- or puf2-

parasites were removed on days 18, 22, 24, 27 and 30 after

infection. SGs were smashed to release the parasites, and the

proportion of sporozoites to EEFs-like quantified. On day 30 of

mosquito infection, whole infected SGs were mounted in glass

bottom culture dishes (MatTek Corporation); a Zeiss LSM 510

META confocal microscope (Zeiss, Oberkochen, Germany) was

used to perform a Z-series scan followed by 3D reconstructions of

the infected SGs using Imaris (Bitplane AG, Switzerland).

In vitro sporozoite hepatocyte infectivity
For all experiments, wild type, puf1- and puf2- salivary gland

sporozoites were collected on day 18 after the mosquito blood

meal.

Sporozoite gliding was evaluated with 36104 sporozoites for 40

minutes in complete RPMI, at 37uC on glass cover slips covered

with anti-circumsporozoite protein (CSP) monoclonal antibody

[3D11; 53]. Sporozoites were subsequently fixed in 4% parafor-

maldehyde (PFA) for 10 minutes and stained with anti-CSP. The

percentage of sporozoites associated with CSP trails was quantified

by fluorescence microscopy.

Cell traversal assays were performed with 36104 sporozoites

added to 76104 Huh7 cells (seeded on the previous day) in the

presence of 1 mg/ml of cell-impermeable dextran tetramethylr-

hodamine (10 000 MW), lysine fixable (fluoro-ruby) (Molecular

Probes/Invitrogen). After 2 hours, the percentage of dextran-

positive cells was quantified by fluorescence-activated cell sorting

(FACS)[55].

In order to quantify cell invasion, 36104 sporozoites were added

to Huh7 cells. Infection was stopped after 2 h by addition of PFA

4%; double staining with anti-CSP was performed according to

[56] in order to distinguish extracellular from intracellular

sporozoites. Intra-hepatic development was assessed by fixing

infected Huh7 cells at 48 h p.i. with 4% PFA. Parasites were

stained with anti-GFP antibody conjugated with FITC (Molecular

Probes/Invitrogen). Pictures were taken on an Axiovert 200 M

fluorescence microscope and EEF size measured using ImageJ

1.38 h software.

In vivo sporozoite infectivity
Male C57BL/6 mice (6–8 weeks) were intravenously (i.v.)

injected with 16104 18-day SG sporozoites (wild type, puf1- or

puf2-). After 44 hours liver infection load was quantified by qRT-

PCR analysis of P. berghei 18S rRNA normalized against

hypoxanthine-guanine phosphoribosyltransferase (HPRT) (for

primers see Table S4).

To assess mutant parasites capacity to pass through the liver and

reach the blood, 16104 sporozoites were injected i.v. into C57BL/

6 mice.

To verify mutant sporozoites infectivity during natural infection,

C57BL/6 mice were exposed to 4 infected mosquitoes for 30

minutes. All mice were bitten by at least by one infected mosquito.

Parasitemia were checked by Giemsa-stained blood smear daily

until 10 days post infection.

Electron microscopy
A. stephensi salivary glands infected with wild type, puf1- or puf2-

parasites were removed and fixed in 2.5% gluteraldehyde in 0.1 M

sodium cacodylate (pH = 7.3) for 48 hours at 4uC, followed by 3

10-minute washes in 0.1 M sodium cacodylate. All tissues were

post fixed in 1% OsO4 in deionized water, washed and

counterstained with uranil acetate for 30 minutes. After washing

with de-ionized water for 10 minutes, dehydration with ethanol

(70% and 96%, 1 minute each) was performed followed by 2 10-

minute incubations in absolute ethanol and propylene oxide.

Salivary glands were finally infiltrated with 1:1 propylene oxyde

and EPON resin for 30 minutes followed by overnight infiltration

in 100% EPON’s resin. The tissues were embedded in flat molds

in 100 EPON for 48 hours at 70uC. Ultra-thin sections of 70 nm

were cut with a diamond knife (Diatome 45u) in a ultra-microtome

(Reichert Jung Ultracut-E), collected on copper grids (mesh 200

hexagonal) and stained with Reynolds lead citrate and 2% uranil

acetate (5+5 minutes). The grids were observed on a Jeol JEM-

100cxI transmission electron microscope.

Expression profiling Reverse Transcriptase (RT)-PCRs and
RT-qPCR

Wild type, puf1- and puf2- sporozoites were extracted at days 18

and 27 post mosquito infection; total RNA was extracted with

TRIzol, and 400 ng total RNA reverse transcribed in the presence

of random hexamers and oligo d(T) oligonucleotides with

Superscript II. 25 ng were used in a PCR using the following

cycling parameters: 94uC 3 minutes, 35 cycles of 94uC 10 seconds

and 1 minute at 60uC, with a final elongation step of 10 minutes.

PCR amplicons were run on 2% agarose gels. Oligonucleotide

primers are shown in Table S3. Negative controls were performed

with RT-negative samples (data not shown). RT-qPCR analyses

were performed on cDNA prepared from day 18 wild type and

puf2- salivary gland sporozoites; oligonucleotide primers are shown

in Table S8. qPCR was done with Power SYBR Green (Applied

Biosystems) according to the manufacturer’s instructions. Three

independent biological replicate cDNA samples were tested for

each parasite. ABI 7500 Fast Sequence Detection System. Cycling

parameters for all genes were: 95uC for 15 minutes, followed by 50

cycles of 95uC|15 seconds, 55uC|15 seconds, 60uC|45 seconds,

followed by melting curve analyses. Relative mRNA abundance

for each transcript was determined by the 22DDCt method

following ABI User Bulletin 2; expression data was normalised

versus ama-1. Final values were log2 transformed to be comparable

to subsequent microarray data.

Expression profiling by microarray hybridization
The RMSANGER Affymetrix custom tiling array was designed

against the 8 x genome assemblies for P. berghei and P. chabaudi.

Prior to analysis, all 6.3 million probes were remapped using the

exonerate software (http://http://www.ebi.ac.uk/,guy/exonerate)

against the latest P. berghei genome assembly available from the

Wellcome Trust Sanger institute (ftp://ftp.sanger.ac.uk/pub/

pathogens/P_berghei/February_2011); all non-exact matches

and redundant probes were discarded. A custom CDF file was

generated using a combination of Perl scripts to analyse gene

expression profiles of all <5000 annotated genes. 18 and 27 days

sporozoites were dissected from salivary glands of Anopheles stephensi

mosquitoes infected with wild type (ANKA GFPcon 259cl2) or
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puf2- (1267cl2 ). RNA from 3 independent infections each was

extracted with TRIzol according to the manufacturer’s instruc-

tions. Double amplified cDNA was synthesized using the Ambion

WT Expression kit starting with <400 ng of mRNA and labelled

using the Affymetrix Genechip WT Terminal Labeling and

Hybridisation Kit according to the manufacturers’ protocols.

18 hours hybridisations, washing, and staining were done accord-

ing to Affymetrix recommendations. Genechip arrays were

scanned with an Affymetrix 7G scanner. Raw scanned images

were acquired using Affymetrix software suite GCOS and raw CEL

files transferred to R/Bioconductor for pre-processing. The 36wild

type 18 days pi, 36wild type 27 days pi, 36puf2- 18 days pi and

26puf2- 27 days p.i. hybridised arrays were background subtracted,

quantile normalised and median polished using RMA [57]. An

overall F-test was used to select for 374 variant genes using an

adjusted p-value ,0.05 (after correction for false discovery rate

using the Bonferroni-Hochberg adjustment). A linear modelling

was used to extract differential expression (DE) for each pair wise

comparison using the Limma package [58]. Gene Ontology

enrichment was tested using GOstats [59], GO.db (M. Carlson,

S. Falcon, H. Pages and N. Li. GO.db: A set of annotation maps

describing the entire Gene Ontology. R package version 2.3.5.) and

GohyperGall function as described in [60] using the GO terms

annotated for P. falciparum orthologs (version 5/31/2010, down-

loaded from http://www.geneontology.org/GO.downloads.anno-

tations.shtml). All microarray gene expression data are presented in

Table S3. Microarray gene expression for selected genes was

validated with RT-qPCR (Fig. S7). Microarray data have been

submitted to ArrayExpress under the accession number E-TABM-

1067.

Protein expression profiling by Western Blot
Wild type and puf2- sporozoites were extracted from mosquito

salivary glands at day 18 post infection. An amount of protein

corresponding to 300 000 sporozoites was loaded in each well of a

10% polyacrylamide gel and transferred to nitrocellulose mem-

brane (Protran) by electroblotting. Protein expression levels were

determined by incubating the membranes overnight at 4uC, with

the following primary antibodies: anti-Exp1 (kindly provided by

Volker Heussler), 1:1000; anti-Exp2 (kindly provided by Paul

Gilson and Brendan Crabb) 1:1000; anti-Myo-A (kindly provided

by Julian Rayner), 1:300 and anti-Alveolin-9, 1:300 and

subsequent incubation with horseradish-peroxidase conjugated

secondary antibody. Immunostained proteins were visualized with

chemiluminescence detection (Thermo Scientific).

Immunofluorescence assay of Puf2
Red fluorescent protein (RFP)+ sporozoites from the wild type

reference line 733cl1 (RMgm-86) were dissected at day 23 post

infection and washed once in 1X PBS (9300 rcf, 7 minutes,

4uC). 6500 parasites in 10 ml were allowed to adhere to

polylysine slides, fixed for 15 minutes with 4% PFA, and

washed 365 minutes with 1X PBS. After a 10-minutes wash

with fresh 0.1 M Glycine buffer, sporozoites were permeabilized

with 0.1% Triton-X100 for 10 minutes followed by a 3x5

minutes wash with 1X PBS. Slides were blocked 20 minutes at

RT in 1% Albumin and incubated O/N with polyclonal rabbit

anti-Puf antiserum (dilution 1:300) upside down. Sera 904 and

905 were raised in rabbits immunised against FKDNLYNLK-

ELNSW and ENLDKLKEETYILR at Eurogentec. Slides were

washed 3x 15minutes in 1X PBS and incubated with donkey

anti-rabbit, Alexa 488-conjugated secondary antibody, 30

minutes, 37uC (1:400) again upside down. Slides were washed

3x 15 minutes in PBS 1X, and then incubated 3 minutes with

DAPI, RT. Prior to mounting, slides were washed for 5 minutes

and analysed with a widefield Zeiss Axiovert 200M microscope,

with 63x, 1.40 NA objective. To ascertain sera specificity, pre-

adsorption experiments using 5 mg of peptides were used

together with labelling using an unrelated rabbit polyclonal

antibody (data not shown). Donkey anti-rabbit was used without

a primary antibody to make sure no cross reaction was to be

observed (data not shown).

Protein inhibitor experiment on salivary gland at 18 days
post mosquito infection

Day 18 salivary gland sporozoites (SGS) were hand dissected

from both wild type and puf2- parasite lines. 96-wells plate were

seeded with 20,000 SGS in triplicate for both wild type and puf2-

with or without 100 ug/ml (357.1 mM) of Cycloheximide (Sigma)

in RPMI medium (without FBS supplement) and allowed to

develop for 2 and 4 h at room temperature or 37uC. Three images

were taken for each well using a widefield Zeiss Axiovert 200 M

microscope, with 20x, 1.40 NA objective and parasites counted

using ImageJ software to determine slender versus round.

List of accession numbers
Puf1/UIS9 (PFE0935c, PBANKA_123350), Puf2 (PFD0825c,

PBANKA_071920), Exp-2 (PBANKA_133430), Exp-1 (PBANKA_

092670), Ama-1 (PBANKA_091500), GAP45 (PBANKA_143760),

Myo-A (PBANKA_135570), Spect2 (PBANKA_100630), CelTOS

(PBANKA_143230), Spect1 (PBANKA_135560), UIS4 (PBANKA_

050120), UIS1/IK2 (PBANKA_020580), TLP1 (PBANKA_

111600), TRSP (PBANKA_020910), SIAP1 (PBANKA_100620),

MTRAP (PBANKA_051280), TREP (PBANKA_130650), PSOP9/

GAMA (PBANKA_070190), P36p (PBANKA_100220), TFIIH

(PBANKA_141340), RNA polymerase II subunit (PBANKA_

020330), AP2 (PBANKA_083520 and PBANKA_010950), TFIIS

Zinc-fingers (PBANKA_030420 and PBANKA_142110), Plasmep-

sin V (PBANKA_133870), RAD51 (PBANKA_093950), Histone

H2B (PBANKA_094180) and ALBA3 (PBANKA_120440), Alveo-

lin 9 (PBANKA_124060), Protein phosphatase 2C, putative

(PBANKA_091340).
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Plasmodium berghei Puf2.

(TIF)

Figure S2 Generation and analysis of mutants lacking puf1.

(TIF)

Figure S3 Generation and analysis of mutants lacking expres-

sion of puf2.

(TIF)

Figure S4 Generation and analysis of mutant 1081cl1 lacking

expression of puf1 and puf2.

(TIF)

Figure S5 Development of mutant parasites in the mosquito.

(TIF)

Figure S6 puf2- (375 cl1) and puf1-/2- (1081 cl1) parasites

transform into early EEFs in Anopheles stephensi mosquito salivary

glands.

(TIF)

Figure S7 Microarray results for 11 genes initially tested by

quantitative RT-PCR (see Figure 3).

(TIF)
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Figure S8 Gene Ontology enrichment analysis clearly separates

up-regulated transcripts from down-regulated ones.

(TIF)

Figure S9 Ultrastructure of puf2- salivary gland sporozoites on

day 18 after A. stephensi mosquito infection.

(TIF)

Figure S10 30 days -old puf2- (375 cl1) and eik2- parasites do not

transform into early EEFs in A. stephensi mosquito salivary glands to

the same extend.

(JPG)
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(DOC)

Table S2 Functionality and liver stage infectivity of puf gene

deletion mutant.

(DOC)

Table S3 A-N. List of genes up- or down-regulated by

microarray analysis using RMSANGER Affymetrix custom

designed array.

(XLS)

Table S4 Details of the two puf1- P. berghei lines.

(DOC)

Table S5 Primers used for the generation and analysis of the

puf1- lines.

(DOC)

Table S6 Details of the two puf2- lines.

(DOC)

Table S7 Primers used for the generation and analysis of puf2-

lines.

(DOC)

Table S8 List of primer sequences used in RT-PCR and qRT-

PCR experiments.

(DOC)

Video S1 Three-dimensional reconstruction of an A. stephensi

salivary gland infected with wild type sporozoites.

(AVI)

Video S2 Three-dimensional reconstruction of an A. stephensi

salivary gland infected with puf1- sporozoites.

(AVI)

Video S3 Three-dimensional reconstruction of an A. stephensi

salivary gland infected with puf2- sporozoites.

(AVI)
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