1,477 research outputs found
Temperature and relative humidity requirements for conidiogenesis of Beauveria bassiana (Deuteromycetes: Moniliaceae).
Assays were conducted to assess the number of Beauveria bassiana (Bals) Vuill. conidia on Diatraea saccharalis F. (Lepidoptera: Pyralidae), Nezera viridula (L.) and Piezodorus guildinii (Westwood) (Hemiptera: Pantatormidae) corpses maintained at different levels of relative humidity (RH) (75%, 80%, 90% and 100%) and temperatures (22oC, 26oC, 30oC and 34oC) during five days. The isolates produced conidia when exposed to RH from 75% to 100%. Conidiogenesis was incipient at 75% RH on D.saccharalis larvae, but did not occur on N. viridula and P. guildinii. In ideal conditions od RH and during 10 days, mathematical equations were developed to estimate the number of condia produced by isolates ARSEF 933 and ARSEF 2515. Conidia number were shown to be dependant on RH, temperature, fungal isolate, host species, host stage, and time
Inverse flux quantum periodicity of magnetoresistance oscillations in two-dimensional short-period surface superlattices
Transport properties of the two-dimensional electron gas (2DEG) are
considered in the presence of a perpendicular magnetic field and of a {\it
weak} two-dimensional (2D) periodic potential modulation in the 2DEG plane. The
symmetry of the latter is rectangular or hexagonal. The well-known solution of
the corresponding tight-binding equation shows that each Landau level splits
into several subbands when a rational number of flux quanta pierces the
unit cell and that the corresponding gaps are exponentially small. Assuming the
latter are closed due to disorder gives analytical wave functions and
simplifies considerably the evaluation of the magnetoresistivity tensor
. The relative phase of the oscillations in and
depends on the modulation periods involved. For a 2D modulation
with a {\bf short} period nm, in addition to the Weiss oscillations
the collisional contribution to the conductivity and consequently the tensor
show {\it prominent peaks when one flux quantum passes
through an integral number of unit cells} in good agreement with recent
experiments. For periods nm long used in early experiments, these
peaks occur at fields 10-25 times smaller than those of the Weiss oscillations
and are not resolved
The Large Magellanic Cloud and the Distance Scale
The Magellanic Clouds, especially the Large Magellanic Cloud, are places
where multiple distance indicators can be compared with each other in a
straight-forward manner at considerable precision. We here review the distances
derived from Cepheids, Red Variables, RR Lyraes, Red Clump Stars and Eclipsing
Binaries, and show that the results from these distance indicators generally
agree to within their errors, and the distance modulus to the Large Magellanic
Cloud appears to be defined to 3% with a mean value of 18.48 mag, corresponding
to 49.7 Kpc. The utility of the Magellanic Clouds in constructing and testing
the distance scale will remain as we move into the era of Gaia.Comment: 23 pages, accepted for publication in Astrophysics and Space Science.
From a presentation at the conference The Fundamental Cosmic Distance Scale:
State of the Art and the Gaia Perspective, Naples, May 201
Atomic Dark Matter
We propose that dark matter is dominantly comprised of atomic bound states.
We build a simple model and map the parameter space that results in the early
universe formation of hydrogen-like dark atoms. We find that atomic dark matter
has interesting implications for cosmology as well as direct detection:
Protohalo formation can be suppressed below for weak scale dark matter due to Ion-Radiation interactions in the
dark sector. Moreover, weak-scale dark atoms can accommodate hyperfine
splittings of order 100 \kev, consistent with the inelastic dark matter
interpretation of the DAMA data while naturally evading direct detection
bounds.Comment: 17 pages, 3 figure
Extended gaussian ensemble solution and tricritical points of a system with long-range interactions
The gaussian ensemble and its extended version theoretically play the
important role of interpolating ensembles between the microcanonical and the
canonical ensembles. Here, the thermodynamic properties yielded by the extended
gaussian ensemble (EGE) for the Blume-Capel (BC) model with infinite-range
interactions are analyzed. This model presents different predictions for the
first-order phase transition line according to the microcanonical and canonical
ensembles. From the EGE approach, we explicitly work out the analytical
microcanonical solution. Moreover, the general EGE solution allows one to
illustrate in details how the stable microcanonical states are continuously
recovered as the gaussian parameter is increased. We found out that it
is not necessary to take the theoretically expected limit
to recover the microcanonical states in the region between the canonical and
microcanonical tricritical points of the phase diagram. By analyzing the
entropy as a function of the magnetization we realize the existence of
unaccessible magnetic states as the energy is lowered, leading to a treaking of
ergodicity.Comment: 8 pages, 5 eps figures. Title modified, sections rewritten,
tricritical point calculations added. To appear in EPJ
Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy
We review HB stars in a broad astrophysical context, including both variable
and non-variable stars. A reassessment of the Oosterhoff dichotomy is
presented, which provides unprecedented detail regarding its origin and
systematics. We show that the Oosterhoff dichotomy and the distribution of
globular clusters (GCs) in the HB morphology-metallicity plane both exclude,
with high statistical significance, the possibility that the Galactic halo may
have formed from the accretion of dwarf galaxies resembling present-day Milky
Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the
second-parameter problem is presented. A technique is proposed to estimate the
HB types of extragalactic GCs on the basis of integrated far-UV photometry. The
relationship between the absolute V magnitude of the HB at the RR Lyrae level
and metallicity, as obtained on the basis of trigonometric parallax
measurements for the star RR Lyrae, is also revisited, giving a distance
modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are
studied. Finally, the conductive opacities used in evolutionary calculations of
low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and
Space Scienc
b-Jet Identification in the D0 Experiment
Algorithms distinguishing jets originating from b quarks from other jet
flavors are important tools in the physics program of the D0 experiment at the
Fermilab Tevatron p-pbar collider. This article describes the methods that have
been used to identify b-quark jets, exploiting in particular the long lifetimes
of b-flavored hadrons, and the calibration of the performance of these
algorithms based on collider data.Comment: submitted to Nuclear Instruments and Methods in Physics Research
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging
We present a measurement of the top quark pair () production cross
section () in collisions at TeV
using 230 pb of data collected by the D0 experiment at the Fermilab
Tevatron Collider. We select events with one charged lepton (electron or muon),
missing transverse energy, and jets in the final state. We employ
lifetime-based b-jet identification techniques to further enhance the
purity of the selected sample. For a top quark mass of 175 GeV, we
measure pb, in
agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
Search for pair production of the scalar top quark in the electron-muon final state
We report the result of a search for the pair production of the lightest
supersymmetric partner of the top quark () in
collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron
collider corresponding to an integrated luminosity of 5.4 fb. The scalar
top quarks are assumed to decay into a quark, a charged lepton, and a
scalar neutrino (), and the search is performed in the electron
plus muon final state. No significant excess of events above the standard model
prediction is detected, and improved exclusion limits at the 95% C.L. are set
in the the (,) mass plane
Measurement of spin correlation in ttbar production using dilepton final states
We measure the correlation between the spin of the top quark and the spin of
the anti-top quark in (ttbar -> W+ W- b bbar -> l+ nu b l- nubar bbar) final
states produced in ppbar collisions at a center of mass energy sqrt(s)=1.96
TeV, where l is an electron or muon. The data correspond to an integrated
luminosity of 5.4 fb-1 and were collected with the D0 detector at the Fermilab
Tevatron collider. The correlation is extracted from the angles of the two
leptons in the t and tbar rest frames, yielding a correlation strength C=
0.10^{+0.45}_{-0.45}, in agreement with the NLO QCD prediction within two
standard deviations, but also in agreement with the no correlation hypothesis.Comment: 10 pages, 3 figures, submitted to PL
- …
