371 research outputs found

    Probing neutralino dark matter in the MSSM & the NMSSM with directional detection

    Full text link
    We investigate the capability of directional detectors to probe neutralino dark matter in the Minimal Supersymmetric Standard Model and the Next-to-Minimal Supersymmetric Standard Model with parameters defined at the weak scale. We show that directional detectors such as the future MIMAC detector will probe spin dependent dark matter scattering on nucleons that are beyond the reach of current spin independent detectors. The complementarity between indirect searches, in particular using gamma rays from dwarf spheroidal galaxies, spin dependent and spin independent direct search techniques is emphasized. We comment on the impact of the negative results on squark searches at the LHC. Finally, we investigate how the fundamental parameters of the models can be constrained in the event of a dark matter signal.Comment: 21 pages, 16 figure

    Anatomy of flower and fruit of Vassobia breviflora (Solanaceae) in the south of the southern Yungas (Argentina)

    Get PDF
    Solanaceae es una familia con aproximadamente 2400 especies de distribución cosmopolita. Vassobia breviflora es la única especie del género presente en Argentina. El objetivo de este trabajo fue revisar y caracterizar la anatomía de la flor y fruto de V. breviflora a partir de muestras recolectadas en poblaciones de las Yungas del noroeste argentino. Se aplicaron técnicas anatómicas convencionales. Los resultados mostraron que la mayoría de las estructuras de la flor, el fruto y la semilla no difirieron de lo previamente reportado respecto de la organización estructural descripta para otras especies de Solanaceae. No obstante, por primera vez, describimos el androceo, el fruto, la semilla, pedicelo floral y frutal, cinco tipos de tricomas y cinco tipos de estomas en el perianto. Encontramos diferencias en la forma del tejido de transmisión y del tipo de óvulo respecto de lo previamente descripto. Además, localizamos el parénquima y las células epidérmicas secretoras del nectario. En el contexto de la familia Solanaceae, discutimos la función y valor diagnóstico de las estructuras descriptas.Solanaceae is a family with nearly 2400 species of cosmopolitan distribution. Vassobia breviflora is the only species of the genus present in Argentina. The goal of this work was to review and characterize the anatomy of the flower and fruit of V. breviflora from samples collected in populations of Yungas in the argentine Northwest. Conventional anatomical techniques were applied. The results showed that most flower, fruit and seed structures did not differ from those previously reported regarding the structural organization described for other species of the Solanaceae family. However, for the first time, we described the androecium, fruit, seed, floral and fruit pedicels, five types of tricomes and five types of stomata in the perianth. We found some differences in the shape of the transmission tissue and in the type of ovule with respect to that previously reported. Also, we located the parenchyma and the epidermic secretory cells of the nectary. In the context of the family Solanaceae, we discussed the function and diagnostic value of the described structures.Fil: Bernacki, F. G.. Fundación Miguel Lillo; ArgentinaFil: Albornoz, P. L.. Fundación Miguel Lillo; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; ArgentinaFil: Valoy, M.. Fundación Miguel Lillo; ArgentinaFil: Ordano, Mariano Andrés. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    The Higgs boson in the MSSM in light of the LHC

    Full text link
    We investigate the expectations for the light Higgs signal in the MSSM in different search channels at the LHC. After taking into account dark matter and flavor constraints in the MSSM with eleven free parameters, we show that the light Higgs signal in the gammaγgamma\gamma channel is expected to be at most at the level of the SM Higgs, while the hbbˉh\rightarrow b\bar{b} from W fusion and/or the hττˉh \rightarrow\tau\bar\tau can be enhanced. For the main discovery mode, we show that a strong suppression of the signal occurs in two different cases: low MAM_A or large invisible width. A more modest suppression is associated with the effect of light supersymmetric particles. Looking for such modification of the Higgs properties and searching for supersymmetric partners and pseudoscalar Higgs offer two complementary probes of supersymmetry.Comment: 19 pages, 8 figure

    Loop-induced photon spectral lines from neutralino annihilation in the NMSSM

    Full text link
    We have computed the loop-induced processes of neutralino annihilation into two photons and, for the first time, into a photon and a Z boson in the framework of the NMSSM. The photons produced from these radiative modes are monochromatic and possess a clear "smoking gun" experimental signature. This numerical analysis has been done with the help of the SloopS code, initially developed for automatic one-loop calculation in the MSSM. We have computed the rates for different benchmark points coming from SUGRA and GMSB soft SUSY breaking scenarios and compared them with the MSSM. We comment on how this signal can be enhanced, with respect to the MSSM, especially in the low mass region of the neutralino. We also discuss the possibility of this observable to constrain the NMSSM parameter space, taking into account the latest limits from the FERMI collaboration on these two modes.Comment: 18 pages, 3 figures. Minor clarifications added in the text. Typing mistakes and references corrected. Matches published versio

    Primordial Nucleosynthesis

    Full text link
    Primordial nucleosynthesis, or Big-Bang Nucleosynthesis (BBN), is one of the three evidences for the Big-Bang model, together with the expansion of the Universe and the Cosmic Microwave Background. There is a good global agreement over a range of nine orders of magnitude between abundances of 4He, D, 3He and 7Li deduced from observations, and calculated in primordial nucleosynthesis. This comparison was used to determine the baryonic density of the Universe. For this purpose, it is now superseded by the analysis of the Cosmic Microwave Background (CMB) radiation anisotropies. However, there remain, a yet unexplained, discrepancy of a factor 3-5, between the calculated and observed lithium primordial abundances, that has not been reduced, neither by recent nuclear physics experiments, nor by new observations. We review here the nuclear physics aspects of BBN for the production of 4He, D, 3He and 7Li, but also 6Li, 9Be, 11B and up to CNO isotopes. These are, for instance, important for the initial composition of the matter at the origin of the first stars. Big-Bang nucleosynthesis, that has been used, to first constrain the baryonic density, and the number of neutrino families, remains, a valuable tool to probe the physics of the early Universe, like variation of "constants" or alternative theories of gravity.Comment: Invited Plenary Talk given at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery

    Full text link
    The long awaited discovery of a new light scalar at the LHC opens up a new era of studies of the Higgs sector in the SM and its extensions. In this paper we discuss the consequences of the observation of a light Higgs boson with the mass and rates reported by the ATLAS and CMS collaborations on the parameter space of the phenomenological MSSM, including also the so far unsuccessful LHC searches for the heavier Higgs bosons and supersymmetric particle partners in missing transverse momentum as well as the constraints from B physics and dark matter. We explore the various regimes of the MSSM Higgs sector depending on the parameters MA and tan beta and show that only two of them are still allowed by all present experimental constraints: the decoupling regime where there is only one light and standard--like Higgs boson and the supersymmetric regime in which there are light supersymmetric particle partners affecting the decay properties of the Higgs boson, in particular its di-photon and invisible decays.Comment: 21 pages, 9 figures v2 - Discussion of the impact of LHC data extended, scan statistics increased, a few figures added and typos correcte

    Les Houches 2011: Physics at TeV Colliders New Physics Working Group Report

    Full text link
    We present the activities of the "New Physics" working group for the "Physics at TeV Colliders" workshop (Les Houches, France, 30 May-17 June, 2011). Our report includes new agreements on formats for interfaces between computational tools, new tool developments, important signatures for searches at the LHC, recommendations for presentation of LHC search results, as well as additional phenomenological studies.Comment: 243 pages, report of the Les Houches 2011 New Physics Group; fix three figure

    New measurement of neutron capture resonances of 209Bi

    Get PDF
    The neutron capture cross section of Bi209 has been measured at the CERN n TOF facility by employing the pulse-height-weighting technique. Improvements over previous measurements are mainly because of an optimized detection system, which led to a practically negligible neutron sensitivity. Additional experimental sources of systematic error, such as the electronic threshold in the detectors, summing of gamma-rays, internal electron conversion, and the isomeric state in bismuth, have been taken into account. Gamma-ray absorption effects inside the sample have been corrected by employing a nonpolynomial weighting function. Because Bi209 is the last stable isotope in the reaction path of the stellar s-process, the Maxwellian averaged capture cross section is important for the recycling of the reaction flow by alpha-decays. In the relevant stellar range of thermal energies between kT=5 and 8 keV our new capture rate is about 16% higher than the presently accepted value used for nucleosynthesis calculations. At this low temperature an important part of the heavy Pb-Bi isotopes are supposed to be synthesized by the s-process in the He shells of low mass, thermally pulsing asymptotic giant branch stars. With the improved set of cross sections we obtain an s-process fraction of 19(3)% of the solar bismuth abundance, resulting in an r-process residual of 81(3)%. The present (n,gamma) cross-section measurement is also of relevance for the design of accelerator driven systems based on a liquid metal Pb/Bi spallation target.Comment: 10 pages, 5figures, recently published in Phys. Rev.

    The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the Fourier space wedges of the final sample

    Get PDF
    Citation: Grieb, J. N., Sanchez, A. G., Salazar-Albornoz, S., Scoccimarro, R., Crocce, M., Dalla Vecchia, C., . . . Zhao, G. B. (2017). The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the Fourier space wedges of the final sample. Monthly Notices of the Royal Astronomical Society, 467(2), 2085-2112. doi:10.1093/mnras/stw3384We extract cosmological information from the anisotropic power-spectrummeasurements from the recently completed Baryon Oscillation Spectroscopic Survey (BOSS), extending the concept of clustering wedges to Fourier space. Making use of new fast-Fourier-transform-based estimators, we measure the power-spectrum clustering wedges of the BOSS sample by filtering out the information of Legendre multipoles l > 4. Our modelling of these measurements is based on novel approaches to describe non-linear evolution, bias and redshift-space distortions, which we test using synthetic catalogues based on large-volume N-body simulations. We are able to include smaller scales than in previous analyses, resulting in tighter cosmological constraints. Using three overlapping redshift bins, we measure the angular-diameter distance, the Hubble parameter and the cosmic growth rate, and explore the cosmological implications of our full-shape clustering measurements in combination with cosmic microwave background and Type Ia supernova data. Assuming a Lambda cold dark matter (Lambda CDM) cosmology, we constrain the matter density to Omega M = 0.311(-0.010)(+ 0.009) and the Hubble parameter to H-0 = 67.6(-0.6)(+0.7) km s(-1) Mpc(-1), at a confidence level of 68 per cent. We also allow for nonstandard dark energy models and modifications of the growth rate, finding good agreement with the Lambda CDM paradigm. For example, we constrain the equation-of-state parameter to omega =-1.019(-0.039)(+0.048) . This paper is part of a set that analyses the final galaxy-clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS
    corecore