43 research outputs found

    Reticular dysgenesis-associated AK2 protects hematopoietic stem and progenitor cell development from oxidative stress.

    Get PDF
    Adenylate kinases (AKs) are phosphotransferases that regulate the cellular adenine nucleotide composition and play a critical role in the energy homeostasis of all tissues. The AK2 isoenzyme is expressed in the mitochondrial intermembrane space and is mutated in reticular dysgenesis (RD), a rare form of severe combined immunodeficiency (SCID) in humans. RD is characterized by a maturation arrest in the myeloid and lymphoid lineages, leading to early onset, recurrent, and overwhelming infections. To gain insight into the pathophysiology of RD, we studied the effects of AK2 deficiency using the zebrafish model and induced pluripotent stem cells (iPSCs) derived from fibroblasts of an RD patient. In zebrafish, Ak2 deficiency affected hematopoietic stem and progenitor cell (HSPC) development with increased oxidative stress and apoptosis. AK2-deficient iPSCs recapitulated the characteristic myeloid maturation arrest at the promyelocyte stage and demonstrated an increased AMP/ADP ratio, indicative of an energy-depleted adenine nucleotide profile. Antioxidant treatment rescued the hematopoietic phenotypes in vivo in ak2 mutant zebrafish and restored differentiation of AK2-deficient iPSCs into mature granulocytes. Our results link hematopoietic cell fate in AK2 deficiency to cellular energy depletion and increased oxidative stress. This points to the potential use of antioxidants as a supportive therapeutic modality for patients with RD

    The Endoplasmic Reticulum Stress Response in Neuroprogressive Diseases: Emerging Pathophysiological Role and Translational Implications

    Get PDF
    The endoplasmic reticulum (ER) is the main cellular organelle involved in protein synthesis, assembly and secretion. Accumulating evidence shows that across several neurodegenerative and neuroprogressive diseases, ER stress ensues, which is accompanied by over-activation of the unfolded protein response (UPR). Although the UPR could initially serve adaptive purposes in conditions associated with higher cellular demands and after exposure to a range of pathophysiological insults, over time the UPR may become detrimental, thus contributing to neuroprogression. Herein, we propose that immune-inflammatory, neuro-oxidative, neuro-nitrosative, as well as mitochondrial pathways may reciprocally interact with aberrations in UPR pathways. Furthermore, ER stress may contribute to a deregulation in calcium homoeostasis. The common denominator of these pathways is a decrease in neuronal resilience, synaptic dysfunction and even cell death. This review also discusses how mechanisms related to ER stress could be explored as a source for novel therapeutic targets for neurodegenerative and neuroprogressive diseases. The design of randomised controlled trials testing compounds that target aberrant UPR-related pathways within the emerging framework of precision psychiatry is warranted

    Supplemental Material: Ice-rafted dropstones at midlatitudes in the Cretaceous of continental Iberia

    No full text
    (I) Supplementary text (geological setting, sedimentology and morphometric analysis of dropstones, FESEM analysis of quartz grains, and methods); (II) supplementary Figures. S1–S7; and (III) supplementary Table S1.  </p

    Targeting cyclophilin D and the mitochondrial permeability transition enhances β-cell survival and prevents diabetes in Pdx1 deficiency

    No full text
    Mutations of the pancreatic duodenal homeobox gene-1, Pdx1, cause heritable diabetes in humans and mice. A central abnormality with Pdx1 deficiency is increased death of β-cells, leading to decreased β-cell mass. We show that lentiviral suppression of Pdx1 increases death of mouse insulinoma MIN6 β-cells associated with dissipation of the mitochondrial inner membrane electrochemical gradient, Δψm. Preventing mitochondrial permeability transition pore opening with the cyclophilin D inhibitor cyclosporin A restored Δψm and rescued cell viability. Reduced β-cell mass, markers of β-cell apoptosis, necrosis, and decreased proliferation are present in Pdx1 haploinsufficient mice. Genetic ablation of the Ppif gene, encoding cyclophilin D, restored β-cell mass and decreased TUNEL and complement complex labeling without affecting β-cell proliferation. In adult mice maintained on a high-fat diet, Ppif ablation normalized fasting glucose and glucose and insulin responses to acute glucose challenge. Thus, cyclophilin D and the mitochondrial permeability transition are critical regulators of β-cell death caused by Pdx1 insufficiency
    corecore