64 research outputs found

    Relative Impacts of Adult Movement, Larval Dispersal and Harvester Movement on the Effectiveness of Reserve Networks

    Get PDF
    Movement of individuals is a critical factor determining the effectiveness of reserve networks. Marine reserves have historically been used for the management of species that are sedentary as adults, and, therefore, larval dispersal has been a major focus of marine-reserve research. The push to use marine reserves for managing pelagic and demersal species poses significant questions regarding their utility for highly-mobile species. Here, a simple conceptual metapopulation model is developed to provide a rigorous comparison of the functioning of reserve networks for populations with different admixtures of larval dispersal and adult movement in a home range. We find that adult movement produces significantly lower persistence than larval dispersal, all other factors being equal. Furthermore, redistribution of harvest effort previously in reserves to remaining fished areas (‘fishery squeeze’) and fishing along reserve borders (‘fishing-the-line’) considerably reduce persistence and harvests for populations mobile as adults, while they only marginally changes results for populations with dispersing larvae. Our results also indicate that adult home-range movement and larval dispersal are not simply additive processes, but rather that populations possessing both modes of movement have lower persistence than equivalent populations having the same amount of ‘total movement’ (sum of larval and adult movement spatial scales) in either larval dispersal or adult movement alone

    High interannual variability in connectivity and genetic pool of a temperate clingfish matches oceanographic transport predictions

    Get PDF
    Adults of most marine benthic and demersal fish are site-attached, with the dispersal of their larval stages ensuring connectivity among populations. In this study we aimed to infer spatial and temporal variation in population connectivity and dispersal of a marine fish species, using genetic tools and comparing these with oceanographic transport. We focused on an intertidal rocky reef fish species, the shore clingfish Lepadogaster lepadogaster, along the southwest Iberian Peninsula, in 2011 and 2012. We predicted high levels of self-recruitment and distinct populations, due to short pelagic larval duration and because all its developmental stages have previously been found near adult habitats. Genetic analyses based on microsatellites countered our prediction and a biophysical dispersal model showed that oceanographic transport was a good explanation for the patterns observed. Adult sub-populations separated by up to 300 km of coastline displayed no genetic differentiation, revealing a single connected population with larvae potentially dispersing long distances over hundreds of km. Despite this, parentage analysis performed on recruits from one focal site within the Marine Park of Arrabida (Portugal), revealed self-recruitment levels of 2.5% and 7.7% in 2011 and 2012, respectively, suggesting that both long-and short-distance dispersal play an important role in the replenishment of these populations. Population differentiation and patterns of dispersal, which were highly variable between years, could be linked to the variability inherent in local oceanographic processes. Overall, our measures of connectivity based on genetic and oceanographic data highlight the relevance of long-distance dispersal in determining the degree of connectivity, even in species with short pelagic larval durations

    Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns

    Get PDF
    This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME) characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela – Colombia), while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of different taxa

    New Insights into the Bacterial Fitness-Associated Mechanisms Revealed by the Characterization of Large Plasmids of an Avian Pathogenic E. coli

    Get PDF
    Extra-intestinal pathogenic E. coli (ExPEC), including avian pathogenic E. coli (APEC), pose a considerable threat to both human and animal health, with illness causing substantial economic loss. APEC strain χ7122 (O78∶K80∶H9), containing three large plasmids [pChi7122-1 (IncFIB/FIIA-FIC), pChi7122-2 (IncFII), and pChi7122-3 (IncI(2))]; and a small plasmid pChi7122-4 (ColE2-like), has been used for many years as a model strain to study the molecular mechanisms of ExPEC pathogenicity and zoonotic potential. We previously sequenced and characterized the plasmid pChi7122-1 and determined its importance in systemic APEC infection; however the roles of the other pChi7122 plasmids were still ambiguous. Herein we present the sequence of the remaining pChi7122 plasmids, confirming that pChi7122-2 and pChi7122-3 encode an ABC iron transport system (eitABCD) and a putative type IV fimbriae respectively, whereas pChi7122-4 is a cryptic plasmid. New features were also identified, including a gene cluster on pChi7122-2 that is not present in other E. coli strains but is found in Salmonella serovars and is predicted to encode the sugars catabolic pathways. In vitro evaluation of the APEC χ7122 derivative strains with the three large plasmids, either individually or in combinations, provided new insights into the role of plasmids in biofilm formation, bile and acid tolerance, and the interaction of E. coli strains with 3-D cultures of intestinal epithelial cells. In this study, we show that the nature and combinations of plasmids, as well as the background of the host strains, have an effect on these phenomena. Our data reveal new insights into the role of extra-chromosomal sequences in fitness and diversity of ExPEC in their phenotypes
    corecore