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Abstract

Recruitment constraints on Singapore’s dwindling fluted giant clam, Tridacna squamosa, population were studied by
modelling fertilisation, larval transport, and settlement using real-time hydrodynamic forcing combined with knowledge of
spawning characteristics, larval development, behaviour, and settlement cues. Larval transport was simulated using a finite-
volume advection-diffusion model coupled to a three-dimensional hydrodynamic model. Three recruitment constraint
hypotheses were tested: 1) there is limited connectivity between Singapore’s reefs and other reefs in the region, 2) there is
limited exchange within Singapore’s Southern Islands, and 3) there exist low-density constraints to fertilisation efficacy
(component Allee effects). Results showed that connectivity among giant clam populations was primarily determined by
residual hydrodynamic flows and spawning time, with greatest chances of successful settlement occurring when spawning
and subsequent larval dispersal coincided with the period of lowest residual flow. Simulations suggested poor larval
transport from reefs located along the Peninsular Malaysia to Singapore, probably due to strong surface currents between
the Andaman Sea and South China Sea combined with a major land barrier disrupting larval movement among reefs. The
model, however, predicted offshore coral reefs to the southeast of Singapore (Bintan and Batam) may represent a significant
source of larvae. Larval exchange within Singapore’s Southern Islands varied substantially depending on the locations of
source and sink reefs as well as spawning time; but all simulations resulted in low settler densities (2.1–68.6 settled
individuals per 10,000 m2). Poor fertilisation rates predicted by the model indicate that the low density and scattered
distribution of the remaining T. squamosa in Singapore are likely to significantly inhibit any natural recovery of local stocks.
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Introduction

Giant clam populations in Singapore have declined since the

early 1950s due to overharvesting and the loss of coral reef habitats

[1,2]. Surveys of Singapore’s Southern Islands conducted in 2009/

2010 indicate that only a very small adult population of two

species (Tridacna crocea and T. squamosa) persists, while Hippopus

hippopus, T. giga and T. maxima, which used to be present, are now

locally extinct [2,3]. All the clams surveyed were mature [3],

indicating a lack of local recruitment and possibly a low chance of

natural recovery. For giant clam populations to remain viable,

each reproducing clam must replace itself within a generation

length. This encompasses the probability that: 1) broadcast

gametes meet and fertilise, 2) larvae are dispersed, settle

successfully and grow, and 3) the new clams reach reproductive

age and produce new larvae. Singapore’s giant clam populations

are probably constrained by component Allee effects, i.e. their low

densities reduce the likelihood of successful fertilisation and

subsequent recruitment [4,5]. As populations of marine organisms

were thought to be ‘open’ with large effective population sizes [6],

Allee effects were rarely considered important [7]. However,

broadcast spawning marine species experiencing reduced popula-

tions, due to over-exploitation for example, are now believed to be

susceptible to Allee effects [7,8].

Giant clams are broadcast spawners with high fecundity but

poor early life survivorship [9]. Published recruitment studies of

giant clams are few in number [10,11], and none address larval

dispersal mechanisms despite the well-documented importance of

larval transport for many marine invertebrate species [12,13].

With a planktonic phase of approximately nine days [14], their

larvae are likely to have a substantial dispersal capability (as larvae

can potentially be transported hundreds of kilometres in that
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timeframe), which may facilitate connectivity among populations

[15,16]. Conversely, results from giant clam genetic studies have

indicated restricted gene flow, suggesting lower levels of exchange

[17,18]. Ocean current patterns have been invoked to explain such

genetic divergences among marine invertebrate populations [19],

as they can influence temporal and spatial physical processes that

potentially restrict larval dispersal and gene flow [20,21].

Efforts to conserve giant clams in Singapore are underway

[2,22] with baseline research conducted on their distribution [1,3],

autecology [23,24,25] and behaviour [26,27]. Regionally, studies

on depleted giant clam populations have examined the funda-

mental genetic structures of broodstock populations vis-á-vis

enhancing genetic diversity in progeny batches [28,29] and

reintroducing captive-reared clams onto reefs [30]. Larval life

stages are important considerations when rebuilding marine

invertebrate stocks [31], especially as recruitment rates and

population connectivity for molluscs are dependent on the

dispersal patterns of planktonic larvae from spawning areas to

settlement grounds [32]. Knowledge on larval dispersal within

Singapore waters is essential to ensure a sustainable population of

giant clams, for instance, by helping to identify nursery sites that

have the greatest potential as a source of larvae for other Southern

Islands reefs. Through a combination of hydrodynamic and

behavioural modelling of clam larvae, the present study simulates

connectivity and recruitment to investigate potential constraints on

the transport success of fluted giant clam, T. squamosa larvae—

expressed as the number of larvae assumed to have settled onto

local reefs by the end of their pelagic cycle. We tested three

hypotheses: 1) there is limited connectivity between Singapore’s

reefs and other reefs in the region, 2) there is limited exchange

within Singapore’s Southern Islands and 3) there exist low-density

constraints to fertilisation efficacy (component Allee effects).

Materials and Methods

Egg and larval transport was modelled using a three-dimen-

sional (3D) hydrodynamic model and an Eulerian transport model

coupled with mathematical definitions of larval characteristics,

including estimates of sedimentation velocity, growth, behaviour

and development of giant clam larvae.

Hydrodynamic model
Delft3D is a modelling system that allows the simulation of flow,

wave, sediment transport, and ecological processes (see [33,34]).

By solving well-established shallow-water hydrostatic pressure

equations, Delft3D-FLOW can simulate the 3D unsteady flow and

transport phenomena resulting from tidal and meteorological

forcing [34,35]. These model equations, formulated in orthogonal

curvilinear coordinates, are discretised onto a staggered Arakawa-

C grid and time-integrated by means of an alternating direction

implicit (ADI) numerical scheme in horizontal directions and by

the Crank-Nicolson method along the vertical, which is either

discretised by terrain following coordinates (s-transformation) or

through horizontal z-layers [36]. The solution is mass conserving

at every grid cell and time step. This code is extended with

transport of salt and heat content and with four turbulence models

such as the k-e model [37] for vertical exchange of horizontal

momentum and matter or heat, possibly subjected to density

stratification, and with other models for lateral mixing. Along the

open sea boundaries, tidal harmonics for water level or currents

and concentration patterns for constituents are imposed. The

computed flow and mass-transport patterns can be coupled off-line

to other Delft3D modules, such as the Eulerian advection-diffusion

model Delft3D-WAQ (see below). In this off-line coupling,

aggregation in time step and/or grid cells is optional for speeding

up subsequent analyses. A number of studies [e.g. 33,38] have

demonstrated the applicability of Delft3D to the modelling of

shallow-water hydrodynamics.

Model grid resolution, water layers, and model forcing
Here we used a locally refined version [39] of the Singapore

Regional Model (see [40]). This model is composed of three

domains [41]. The model’s outer domain has a grid cell size

decreasing from 30 km near the boundaries to ,300 m around

Singapore (see Figure 1). The middle domain (in red) has the same

resolution (300 m), but the local domain (in blue) around

Singapore’s islands are refined by a factor three compared to

the outer and middle domains, leading to grid cell sizes down to

100 m.

The model was forced at its three open boundaries (the

Andaman Sea in the northwest, the South China Sea in the

northeast, and the Java Sea in the southeast) by 8 tidal constituents

and a mean annual cycle of the monsoon-induced water level,

derived from 15 years of Topex-Poseidon and Jason-1 satellite

altimetry (see [40,42]).

Calibration and validation of hydrodynamics
The hydrodynamics in Singapore coastal waters are complex,

with predominantly semi-diurnal water level variations but diurnal

currents. Superimposed on this are compound tides generated by

semi-diurnal and diurnal constituents with a periodicity equal to

the spring neap cycle (approximately 2 weeks), and monsoon

currents [39]. Within Singapore’s Southern Islands area, domi-

nant flow is eastward from April/May to September/October,

and westward during the other months. This seasonal variation,

and the two-weekly variations, is well reproduced by the model. It

should be noted that the stations Banyan and Sawa are within the

Southern Islands area, where large-scale clockwise circulation

generates more pronounced eastward currents than in the open

Singapore Strait south of the islands [41]. Therefore residual

currents within the Southern Islands group in April tend to be

directed eastward while in the open strait they may be directed

westward.

Transport model
Transport of giant clam eggs and larvae was modelled using the

water quality module of Delft3D (Delft3D-WAQ) [43]. Delft3D-

WAQ is a transport model that has been successfully applied to

dispersal simulations of seagrass seeds, fish larvae and mangrove

propagules [13,44,45,46]. The model calculates the concentrations

of ‘substances’ (in this case: either eggs or larvae) for each time-step

as a function of the initial concentrations, advective and dispersive

transport, and biological characteristics and processes. Delft3D-

WAQ is an Eulerian model based on the finite-volume method

(i.e. multiplication of fluxes with concentrations to obtain masses

across internal and external boundaries). Both finite-volume

methods and particle tracking model approaches can (in principle)

provide comparable results [47]. With our focus on mid-field and

far-field effects, the WAQ model (including the extensive and well-

validated biological process library) is more appropriate than a

particle-tracking method. The main advantages of particle-

tracking are that it offers sub-grid model resolution as well as

the opportunity to track individual seedlings, both of which are not

very relevant to our study. The actual water system is represented

within Delft3D-WAQ by means of computational elements

(segments). The flow between segments is derived from the

hydrodynamic model (Delft3D-FLOW) of the same resolution (i.e.

down to 100 m around the Southern Islands).
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Definition of processes and parameters
Specific release points outside of Singapore (8 points) (Figure 1A)

and within the Southern Islands (28 points) (Figure 1B) were

selected as initial spawning points for modelling the transport of

eggs and larvae. Factors that are known to affect larval growth and

development were incorporated into the transport model: spawn-

ing periods, different stages of larval development (with different

behavioural rules), larval swimming behaviour and mortality of

larvae at respective stages. The details of larval stages, specific

behavioural rules, processes and parameters incorporated into the

model are described below.

Figure 1. Singapore regional model. This model is composed of 3 domains. A) The overall outer domain including Peninsular Malaysia and the 8
regional release points (green dots). The red and blue domains represent the refined grid resolutions for Singapore’s coastal waters. B) The blue grid
encompasses the waters surrounding Singapore’s Southern Islands. The red dots represent the 28 release points (i.e. the positions of T. squamosa in
Singapore).
doi:10.1371/journal.pone.0058819.g001
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Spawning
Spawning seasonality in T. squamosa varies among localities

[4,48,49] but mature gametes can generally be found throughout

most of the year [50]. Since the actual spawning periods in

Singapore are unknown, three time points representing local

seasonality were selected to investigate the effects of spawning

times on recruitment success. Spawning in giant clams often

occurs during full moon or new moon [51,52] and this was

therefore taken into account with the transport of either eggs or

larvae modelled assuming each simulation was a single spawning

event on the following lunar periods: 22 January (new moon), 10

April (full moon) and 18 June (new moon) 2004. Giant clams are

benthic spawners, hence all eggs were released in the lowest 10%

of the model layer representing the water column.

Development and behaviour of eggs and larvae
In the model, five developmental stages [25] were distinguished

based on their behavioural and physical traits in relation to

horizontal and vertical transport.

Stage 1: Passive horizontal pelagic transport of eggs homo-

genously distributed within the water column. At day 0, eggs were

assumed to have neutral buoyancy while being passively trans-

ported by currents.

Stage 2: Passive horizontal pelagic transport of trochophores as

in Stage 1. Assuming all the released eggs were fertilised, upon

hatching after 24 hours, the trochophores have limited overall

locomotion [53] and are largely transported by currents. With

their poor swimming ability, vertical transport with diel migration

is limited at this stage (see ‘‘Sensitivity analyses’’ below). The

distinction between eggs and pelagic trochophores was made to

facilitate growth parameter settings such as mortality rates and

sedimentation velocity.

Stage 3: Passive horizontal pelagic transport of veliger larvae.

Locomotion of early veligers (2 to 4 days old) is primarily through

ciliary band movement [54,55], which affects vertical position but

is negligible in the horizontal dimension compared to the strength

of the currents. Therefore, only vertical movement was simulated

in the model, by varying the larvae’s sedimentation velocity (see

‘‘Sensitivity analyses’’ below). Stage 3 mortality rates and

sedimentation velocity were different to those in Stage 2.

Stage 4: Passive horizontal pelagic transport of veliger larvae. In

Stage 4 (5 to 7 days old), late veligers develop a primitive foot—an

initiation of their sedentary lifestyle, but still rely on swimming to

move between the surface water and bottom layers. The sedentary

component of Stage 4 distinguishes it from Stage 3.

Stage 5: During the last metamorphosis stage, the velum and

fully developed foot of pediveligers allows them to alternately swim

and crawl on the benthos; over time, these larvae become

increasingly sedentary [11,56]. Transport is completed after this

metamorphosis stage. In Stage 5, juveniles (8 to 9 days old) either

continue to exhibit the behaviour of Stage 4 larvae, or settle onto

the coral reefs. Giant clam larvae respond to settlement cues such

as the presence of crustose coralline algae [11] and/or conspecific

adults [57,58], both of which are found on coral reefs. Hence, in

our model, larval settlement was mimicked when larvae passed

over coral reef areas (see Figure 2).

Growth parameters of the various stages were estimated using

existing data obtained from laboratory experiments [25] and

mariculture literature [53,59,60]. The average values for concen-

trations of egg release and development rates for each stage were

chosen as default model settings (see ‘‘Sensitivity analyses’’ below).

For each dispersal scenario, the transport model was run for a

period of 15 days [52] as previous work indicated this was the time

during which T. squamosa larval settlement occurs (unpublished

data).

Sensitivity analyses
Four sensitivity scenarios (and the default scenario) were

performed using a single release site on Pulau Semakau

(1u12910.300N, 103u45925.450E). Three parameters were exam-

ined for their effect on larval transport success: seasonality, larval

sedimentation velocity incorporating diel vertical migration (i.e.

positive in the night and negative in the day), and mortality rates.

For all scenarios, 3 time points were chosen: 22 January, 10 April

and 18 June 2004 (as described earlier). Approximated settling

velocities were varied between the larval stages [54]. Across all

scenarios, Stage 1 (eggs) was assumed neutral buoyancy

Figure 2. Singapore’s Southern Islands. Coral reef areas (in colour) among Singapore’s Southern Islands used to estimate transport success. Each
colour corresponds to a distinct potential sink site.
doi:10.1371/journal.pone.0058819.g002
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(0 cm s21). Three sedimentation velocity scenarios were set for

larvae, where a) all larval stages assumed settling velocities of

0 cm s21 (Neutral), b) all larval stages assumed average settling

velocities (+/20.0579 cm s21; Average) and c) Stage 1 = 0 cm s21;

Stage 2 = +/20.0579 cm s21 and Stages 3–5 = +/20.1 cm s21

(Default). Input values for settling rates were obtained from bivalve

larvae literature [54,61] following a diel vertical migration [62].

Three scenarios were set to test effects of mortality rates on

survivorship, where all larval stages experienced a) lowest mortality

(Low mortality), b) highest mortality (High mortality) and c) average

mortality (Default). For the respective larval stages, mortality rates

were estimated using published data of other giant clam species

(Table 1). The settlers’ distribution patterns were analysed using

graphic contour plots that indicated both the temporal and spatial

distribution of larvae (densities m22). At each time point, the

number of settlers (i.e. total bottom larvae) that had arrived on all

of the local coral reefs at the end of the model run was summed to

calculate the transport success for the respective scenarios.

Modelling scenarios
Tridacna squamosa have a high fecundity, releasing eggs of

420,000 to 46,000,000 eggs released per individual each spawning

[25,49]. In the model, a fixed average initial concentration of

4,500,000 eggs was released over a 15-minute time step. Based on

the sensitivity analyses, Default settings were used for all transport

models. Three main scenarios were considered in the investigation

of larval connectivity and the effects of hydrodynamics on larval

recruitment.

(1) Dispersal patterns from regional donor reefs to Singapore—

this scenario examined the potential of regional coral reefs to

donate giant clam larvae to reefs in Singapore (i.e. recipient

reefs), modelled using the hydrodynamics simulated for 22

January, 10 April and 18 June 2004 over a period of 15 days

of transport. Eight release points, i.e. possible donor sites,

were examined individually (8 separate runs): Koh Racha Yai

(Thailand), Port Dickson (Malaysia), north and south Batam,

Bintan, Bangka-Belitung and Anambas (all Indonesia), and

Tioman Island (Malaysia) (see Figure 1A for exact localities).

(2) Dispersal patterns within Southern Islands, Singapore—this

scenario examined source-sink dynamics via larval dispersal

within the Southern Islands reefs, modelled using the

hydrodynamics simulated for 10 April 2004 over a period of

15 days of transport. Transport model was performed in April

2004 based on the mass coral spawning in Singapore [66],

assuming that it was an ‘ideal’ period for larval dispersal. For

this study, source reefs are habitats optimal for restocking

while sink reefs are habitats where restocking is likely to be

fruitless, but can serve as locations for the recruitment of

larvae via source reefs [67]. To identify respective source and

sink reefs within the Southern Islands, reefs supporting the

current T. squamosa population (n = 28) in Singapore [3] were

individually examined as possible sources of larvae in this

scenario. Release points were as follows: Raffles Lighthouse

01–02, Biola 01–03, Senang, Pawai, Berkas, Sudong, Salu,

Beting Bemban Besar 01–02, Terumbu Raya, Semakau 01–

05, Terumbu Semakau, Jong 01–02, Terumbu Pempang

Tengah, Hantu, Sisters 01–02, Kusu 01–02 and Cyrene.

(3) Egg dispersal potential—this scenario examined egg dispersal

movement within the Southern Islands reefs; modelled using

the hydrodynamics simulated for 10 April 2004 over a period

of 6 hours. As egg masses are known triggers for eliciting a

spawning response (resulting in either release of sperm or eggs)

in adult clams [68,69], transport of eggs was of greatest

interest. Release points represented the current T. squamosa

population (as described earlier) and eggs were released at

each location (28 separate runs).

Analysis of outputs from modelled scenarios
To quantify larval transport patterns and concentrations, post-

model processing was carried out to calculate the following output

parameters:

(1) Dispersal patterns from regional donor reefs to Singapore—at

each time point, the percentage of successful settlers that had

arrived on Singapore’s coral reefs at the end of the model run

was summed to calculate transport success from respective

donor locations.

(2) Dispersal patterns within Southern Islands, Singapore—the

density of successful settlers (i.e. number of larvae per

10,000 m2) that had arrived on the local coral reefs was

computed at the end of the model run. The model grid area

was subdivided into 19 reef sections (Figure 2), delimited by

the 20 m-depth contour. For each section, the number of

larvae per compartment was summed to determine the

transport success.

(3) Egg dispersal potential—time-series plots describing the

arrival time of eggs over certain clams was determined by

plotting larval density (number per m2) in the model at each

observation point (usually one grid cell) showing the

Table 1. Mortality rates for Tridacna larvae.

Model Source(s)
Stage duration (D)
according to [52] Scenarios for sensitivity analyses

Low mortality rates High mortality rates Default model settings

pm k pm k pm k

Stage 1 (eggs) - 0 h 0 0 0 0 0 0

Stage 2 (trochophores) [63] 24 h 0.167 0.183 0.933 2.703 0.567 0.836

Stages 3 (D-veliger) [63,64] 48 h 0.200 0.112 0.945 1.450 0.529 0.376

Stage 4 (late veliger) [63,65] 48 h 0.200 0.112 0.945 1.450 0.529 0.376

Stage 5 (pediveliger) [63] 96 h 0.571 0.212 0.950 0.749 0.816 0.423

Where data for Tridacna squamosa were deficient, larval mortality at 5 larval stages was extrapolated from published and unpublished reports of other giant clam
species. Data have been reworked to fit into the model, k = 2In(12pm)/(D/24) in which D is stage duration and pm is the proportion of dead larvae.
doi:10.1371/journal.pone.0058819.t001
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accumulation of eggs over any specified coral reef area.

Donor-recipient clams were identified with the following

parameters: distance between clam pairs, arrival time of eggs,

and peak number of eggs arrived per m2.

Results

Sensitivity analyses
Sensitivity analyses of the release times indicated that successful

settlement of giant clam larvae on Singapore’s reefs could

potentially be achieved throughout the year, with the greatest

chances of successful larval settlement when gametes were released

during June. Density of larval settlement on reefs increased over

the months: January,April,June (Figure 3). January is the period

with the greatest westward flow velocity whereas eastward flow

peaks in June–July (with April being the transitional period);

settlement is therefore expected to decrease again after June–July.

Settlement success varied among islands, where in January and

April, the northwestern reefs had higher densities of settled larvae,

while northern and southern reefs had higher densities of settled

larvae in June (Figure 3). Variations in the larval sedimentation

velocity, following a diel vertical migration pattern, did not affect

larval transport success (Figure 4). However, mortality rates for

each larval stage had a significant effect on transport success.

Highest mortality rates (see Table 1) resulted in almost no larval

settlement on the reefs (Figure 4).

Regional donor reefs and Singapore
Transport successes of larvae to Singapore from five donor

localities in neighbouring countries (Koh Racha Yai, Port Dickson,

Bangka-Belitung, Tioman Island and Anambas) were very poor

(,0%) (Table 2). Three other donor localities (north and south

Batam, and Bintan) had more positive transport success. Larvae

from north Batam had the highest settlement success of 61.58% on

Singapore’s reefs in June, while Bintan had high settlement success

throughout the year (January: 30.86%, April: 44.53%, June:

19.40%) (Table 2).

Figure 3. Contour plots of settler density. Distribution patterns of giant clam larvae on local coral reefs at the end of transport phase for the
three spawning periods: A) 22 January, B) 10 April and C) 18 June 2004.
doi:10.1371/journal.pone.0058819.g003

Figure 4. Sensitivity scenario analyses. Sensitivity testing on the effect of mortality and sedimentation velocity settings on numbers of settled
larvae for three different timings of release (January, April, June).
doi:10.1371/journal.pone.0058819.g004
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Southern Islands reefs, Singapore
A summation matrix of total bottom larvae was produced to

identify the prospective source and sink sites on Southern Islands

reefs for analysis of local reef connectivity. Assuming all 19 sections

were potential sink sites, larval transport success (per 10,000 m2 of

reef area) was low among Southern Islands reefs (Table 3). The

eastern islands, such as Sisters’ and Kusu islands (Figure 2), could

be potential source reefs as, when larvae were released from these

locations, surrounding reefs were able to receive high numbers of

settled larvae per 10,000 m2 (Table 3). Four most potential sink

sites were identified: Cyrene, Tekukor, Raffles Lighthouse and

Salu, where from a single source site (Sisters 02) each of the

mentioned reefs received 68.6, 50.2, 46.2 and 38.8 settled larvae

per 10,000 m2 respectively (Table 3). Coral reefs found within the

central area, such as Pulau Hantu, Semakau, Pulau Sudong

(Figure 2), were generally poor or moderate sources and/or sinks,

with the majority of sites receiving fewer than 20 larvae per

10,000 m2.

Egg dispersal potential
To assess low-density constraints to fertilisation efficacy,

dispersal potential of giant clam eggs between donor and recipient

clams within known Singapore localities was analysed from the

point of release (0 hours) to 6 hours later (estimated viability of

eggs; unpublished data). Connectivity between T. squamosa

individuals was limited to either the dense clusters of .2 clams

(Raffles Lighthouse and Biola, Beting Bemban Besar and

Semakau) or paired clam individuals that were in close proximity

(within Jong and within Kusu) (Table 4). Based on the results, for

eggs to arrive over their nearest-neighbour clams within the period

of their viability, clams must be within a vicinity of no more than

2000 m. However, the number of eggs arriving at recipient clams

varied across sites, regardless of time or distance (Table 4).

Discussion

For many sessile marine invertebrates, planktonic stages are the

only mode of dispersal. These stages facilitate their widespread

distribution [12,70], re-colonisation of areas after local extirpation

[71], and promote gene flow [72]. Here, we present the first

modelling study that examines the transport and recruitment of

fluted giant clam larvae from outside and within Singapore waters

using real-time hydrodynamics forcing and incorporating larval

behavioural processes. Our findings suggest that larval connectiv-

ity among reefs is largely dependent on monsoons that influence

larval transport and settlement through the direction and strength

of residual currents. Potential larval donor reefs in the region

appear to be largely restricted to the south of Singapore (Batam

and Bintan). The sheltering effect of land barriers probably affects

input from other neighbouring countries. Egg dispersal and local

recruitment to the existing T. squamosa population was found to be

limited in our model simulations, indicating poor reproductive

efficacy. Hence, the fluted giant clam population in Singapore is

constrained by component Allee effects [7,8], that is, numbers of

remaining clams are too few and sparsely distributed, leading to

low fertilisation success.

Giant clam larval transport success appears to be largely driven

by variability in annual hydrodynamics (for the year that was

modelled). Consistent westward residual currents in the outer

straits of Singapore during January and in April drive larval

transport towards the west, with higher larval retention in the

northwestern reefs. In contrast, the lack of residuals in June allows

much higher retention in the northern and southern reefs with

higher larval settlement. In Singapore, broadcasting corals

annually spawn in late March or mid April [66]. While the

moderate residuals during this time may be favourable for coral

larvae with short settlement periods [73] those with longer life

cycles, such as giant clams, may experience dilution of larvae into

the outer straits when released during this period. The near

absence of residual currents in June favours retention of clam

larvae, reducing offshore dispersal. Larval mortality also greatly

influences transport success, which in turn affects juvenile

recruitment on reefs [60]. Sedimentation velocity and diel vertical

migration, however, have negligible effects on transport success,

suggesting that ocean currents primarily influence larval dispersal

[74]. Results from this modelling study should be interpreted with

caution, bearing in mind the various assumptions made. The

transport success and dispersal distances predicted by the model

probably do not equate to actual recruitment success in the field.

The poor larval connectivity from regional reefs to Singapore

could be explained by the strong surface currents flowing between

the Andaman Sea and South China Sea during the monsoons [75]

that move larvae out of the Singapore Strait with little retention.

Poor larval connectivity with most external potential donor reefs

may also be attributed to Peninsular Malaysia. Phylogeographic

studies of marine invertebrates and mangroves have shown that

this peninsular acts as a barrier that disrupts gene flows between

the east and west coasts, corresponding to the western Sunda Shelf

Barrier [18,19,76]. Population genetic breaks in T. crocea

populations on the Sunda Shelf and western Indonesia also

provide evidence for limited connectivity in this region [17,18]. In

contrast, offshore coral reefs located to the southeast of Singapore,

combined with the favourable westward residuals along the straits

[77] and absence of significant land barriers, encourage high larval

settlement and retention. As predicted by the model, T. squamosa

populations in Batam and Bintan could provide a significant stock

of source larvae for the clam-depauperate reefs in Singapore

waters; possibly facilitating the natural recovery of populations.

Our model results indicate that source larvae from Singapore’s

eastern islands settle in higher numbers on the western reefs within

the Southern Islands. This observation could be explained by the

westward current residuals throughout the year [77], favouring

larval transport in a westward direction. The Southern Islands

reefs can potentially receive larvae from any of the local 28 reefs

that currently host giant clams and such connectivity was

identified in Singapore’s T. squamosa population via genetic

analysis [3]. Reefs on the northernmost (Cyrene and Pulau

Table 2. Proportion of larvae settled onto Singapore’s coral
reefs.

Donor coral reefs Transport success (%)

January 2004 April 2004 June 2004

Koh Racha Yai 0.00 0.00 0.00

Port Dickson 0.00 0.00 0.00

South Batam 0.01 0.80 0.51

North Batam 5.94 22.50 61.58

Bintan 30.86 44.53 19.40

Bangka-Belitung 0.00 0.00 0.00

Tioman 0.13 0.00 0.00

Anambas 0.00 0.00 0.00

Percent of total number of T. squamosa larvae released from various regional
donor reefs that reached recipient reefs around Singapore’s Southern Islands.
doi:10.1371/journal.pone.0058819.t002
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Tekukor) and southernmost (Raffles Lighthouse) reaches of the

Southern Islands received most larvae per unit area in the model,

with fewest larvae per unit area settling among the central island

clusters (Semakau and Sudong). These larval dispersal patterns

may be influenced by the fine-scale tidal flows within the Southern

Islands area [77,78] and the presence of land barriers [76],

influencing the source-sink dynamics. For example, sheltered reefs

off Semakau and Sudong exhibited much lower settler densities

compared to the more exposed reefs off Cyrene and Pulau

Tekukor. Singapore’s healthiest reef, Raffles Lighthouse [79] is,

perhaps surprisingly, not the best sink. The reefs at Raffles

Lighthouse experience a larger tidal range due to their proximity

to the Singapore Straits [78] and there are no nearby islands to the

east, west or south, thus larvae may easily be transported away.

Cyrene, on the other hand, is protected by surrounding land

masses [41,80], leading to higher larval retention.

Fertilisation success in giant clams can be measured by the eggs’

dispersal potential since a known chemical trigger for spawning

synchrony and sperm release among clams depends on the

presence of eggs [68,69]. For successful fertilisation of gametes,

giant clams need to be within close proximity (ideally, aggregated)

[26] for the detection of chemical cues from egg masses released by

neighbouring individuals. For the 28 T. squamosa remaining in

Singapore waters, our model showed limited potential for egg

masses to be dispersed towards/over neighbouring clams within

the period of egg viability. This limited connectivity between

individuals may partially explain the absence of juvenile fluted

giant clams on local reefs [3]. The model results revealed that only

clams found on the same reefs could potentially trigger spawning

and result in subsequent fertilisation. Previous modelling studies

have suggested that, even with small nearest-neighbour distances,

the percentage of eggs fertilised can be limited—especially under

high turbulence conditions such as in the surf zone [81]. Field data

from [82] showed that, even with high densities of mature giant

clams on Rose Atoll, recruitment was low. Fertilisation efficiency is

further known to vary with species and environment [69,83]. In

Table 4. Egg dispersal potential of individual giant clams among the Southern Islands reefs.

Donor clam Recipient clam Distance (m)
Time taken for most eggs
to arrive at clam (h)

Peak number of eggs
per m2

#5 eggs per m2

Raffles Lighthouse 01 Raffles Lighthouse 02 189.80 00:15 1.92

Biola 01 Raffles Lighthouse 02 362.28 00:15 1.52

Biola 02 Biola 01 340.43 00:15 3.73

Biola 03 Biola 01 240.21 00:15 4.29

Beting Bemban Besar 01 Beting Bemban Besar 02 153.23 00:45 3.35

Semakau 04 992.57 01:00 2.80

Semakau 05 850.08 01:00 2.45

Semakau 03 1126.64 01:30 1.15

Semakau 02 1598.75 02:15 2.22

Beting Bemban Besar 02 Semakau 04 941.07 00:45 1.82

Semakau 05 834.62 01:00 1.35

Semakau 02 1499.68 02:15 2.23

Semakau 01 Semakau 05 410.25 01:00 2.14

Semakau 04 626.81 01:15 1.70

Semakau 03 860.57 01:30 4.26

Semakau 02 1488.08 02:00 1.24

Semakau 03 Semakau 02 632.81 01:30 1.20

Semakau 04 Semakau 03 227.33 00:30 2.89

Semakau 02 873.49 01:30 4.57

Semakau 05 Semakau 03 471.36 00:45 3.57

Semakau 02 1104.78 01:45 3.86

Hantu Terumbu Pempang Tengah 2228.47 01:45 1.80

5#eggs#10 per m2

Biola 02 Biola 03 115.88 00:15 6.02

Jong 02 Jong 01 172.94 00:15 9.66

$10 eggs per m2

Biola 03 Biola 02 115.88 00:15 11.58

Beting Bemban Besar 02 Beting Bemban Besar 01 153.23 00:15 12.99

Semakau 05 Semakau 04 248.52 00:15 18.88

Kusu 02 Kusu 01 267.79 00:15 10.00

Only clams with more than one egg per m2 arriving onto a reef within the first 6 hours were considered to constitute successful transport.
doi:10.1371/journal.pone.0058819.t004
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Singapore, low giant clam density affects reproduction in two

ways: 1) it reduces the probability of gametes meeting for

fertilisation and 2) individuals are unlikely to reproduce if there

are no neighbouring clams to trigger the cascade of spawning

synchrony, resulting in component Allee effects on these reduced

populations [84].

As giant clams continue to be threatened by anthropogenic

activities, active conservation measures are needed [51,85,86].

Their sedentary mode of life makes giant clams highly amenable

candidates for restocking and stock enhancement [9,51] and

depleted clam populations [10,57] are currently being restored

through these means in Fiji, Palau and the Philippines [9,30,58].

However, none of these efforts accounted for whether the

transplant sites were effective as source habitats to encourage

recruitment in sink sites [87]. The designation of effective

restocking sites requires closer examination of metapopulation

dynamics, habitat quality and recruitment processes [67,85] and

their potential to augment recruitment [88,89]. The results from

the present study enable the identification and selection of

potential source and sink sites for more effective restocking efforts.

Metapopulation enhancement can thus be optimised by restocking

source populations and subsequently will encourage recruitment in

sink populations via larval dispersal [67]. An added strategy to

enhance current metapopulations of T. squamosa in Singapore

waters is to perform in situ spawning induction of populations

during favourable current periods (e.g. June) to maximise larval

retention and settlement.

Tridacna squamosa restocking efforts in Singapore are ongoing

[2], focusing on ex situ breeding and rearing of juvenile clams for

out-transplantation. Despite a turbid environment, results from

previous outgrowth experiments using imported maricultured

juvenile clams were positive [1]. Natural recovery of the T.

squamosa population in Singapore waters may be possible upon

receiving source larvae from nearby offshore coral reefs south of

Singapore, but this could take several decades. Even with the

potential source larvae, sediment layers on the local reefs continues

to be a major challenge for successful settlement and survival of

juvenile giant clams in Singapore [2,90]. The present study

supports previous suggestions [3] that the fluted giant clam

population in Singapore is experiencing component Allee effects

[7,91], placing constraints on their minimum viable population

[92,93]. Knowledge gaps, such as the critical densities of giant

clams required to assure good fertilisation success, have yet to be

resolved [57,86,94]. Conservation strategies for this species need to

account for local hydrodynamics, potential source and sink reef

sites, and the (ideally, aggregated) placement of restocked

specimens, if the long-term persistence of the population is to be

ensured.
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