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Abstract

Extra-intestinal pathogenic E. coli (ExPEC), including avian pathogenic E. coli (APEC), pose a considerable threat to both
human and animal health, with illness causing substantial economic loss. APEC strain x7122 (O78:K80:H9), containing three
large plasmids [pChi7122-1 (IncFIB/FIIA-FIC), pChi7122-2 (IncFII), and pChi7122-3 (IncI2)]; and a small plasmid pChi7122-4
(ColE2-like), has been used for many years as a model strain to study the molecular mechanisms of ExPEC pathogenicity and
zoonotic potential. We previously sequenced and characterized the plasmid pChi7122-1 and determined its importance in
systemic APEC infection; however the roles of the other pChi7122 plasmids were still ambiguous. Herein we present the
sequence of the remaining pChi7122 plasmids, confirming that pChi7122-2 and pChi7122-3 encode an ABC iron transport
system (eitABCD) and a putative type IV fimbriae respectively, whereas pChi7122-4 is a cryptic plasmid. New features were
also identified, including a gene cluster on pChi7122-2 that is not present in other E. coli strains but is found in Salmonella
serovars and is predicted to encode the sugars catabolic pathways. In vitro evaluation of the APEC x7122 derivative strains
with the three large plasmids, either individually or in combinations, provided new insights into the role of plasmids in
biofilm formation, bile and acid tolerance, and the interaction of E. coli strains with 3-D cultures of intestinal epithelial cells.
In this study, we show that the nature and combinations of plasmids, as well as the background of the host strains, have an
effect on these phenomena. Our data reveal new insights into the role of extra-chromosomal sequences in fitness and
diversity of ExPEC in their phenotypes.
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Introduction

Escherichia coli are versatile bacteria; with the majority being

non-pathogenic and considered as commensals. A subset of these

bacteria has acquired specific virulence attributes that confer an

ability to survive in different niches and cause a broad spectrum of

intestinal and extra-intestinal diseases [1,2]. One of the important

aspects of the fitness of E. coli is thought to be its ability to survive

and persist in a variety of environments, including varied

anatomical niches, food, soils, poultry litter, and acidic conditions.

Extra-intestinal pathogenic E. coli (ExPEC) cause infections outside

of their normal intestinal habitat in both mammals and birds,

resulting in a considerable economic and public health burden

[3,4]. Major infections associated with ExPEC in humans include

urinary tract infections (UTI), newborn meningitis (NBM) and

septicemia [4]. In birds, a subgroup of ExPEC, named Avian

Pathogenic E. coli (APEC), causes a complex of systemic infections,

mainly respiratory, often leading to death [4]. The genetic

relationship between APEC and other ExPEC of human and

animal origin [4] emphasizes the potential zoonotic risk of avian-

derived E. coli strains. In poultry, isolates associated with fecal

matter, environmental contamination and chicken meat products

possess virulence gene profiles similar to those causing human

outbreaks [5,6], which suggests that retail chicken may be an

important reservoir for E. coli causing ExPEC infections in

humans.

ExPEC exhibit a high degree of antigenic and genetic diversity,

which complicates their diagnosis and the design of cross-

protective vaccines [7]. ExPEC are defined by a limited number

of O-antigens, with specific O antigens being associated with

certain clinical syndromes. For example, E. coli from a small

number of O serogroups (O4, O6, O14, O22, O75, and O83)

cause 75% of urinary tract infections [8] and a limited number of

serotypes, principally O1, O2, O78, O8, and O35, are commonly
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implicated in avian colibacillosis [9], suggesting that not all O

polysaccharides have identical virulence properties [10,11]. The

possession of multiple large plasmids is often a defining feature of

ExPEC, especially APEC, in which the virulence is partly plasmid-

mediated [12,13,14,15,16,17,18,19].

Although many studies have been dedicated to understanding

the pathogenesis of ExPEC, little is known about the mechanisms

of their persistence. Since a correlation between the ecology of

bacteria and their virulence exists, understanding the mechanisms

of fitness and survival of these bacteria in extreme and changing

conditions would not only improve our understanding of their

persistence, but also will contribute to better design strategies for

their prevention and treatments.

Previously, the model APEC strain x7122 (O78:K80:H9),

containing three large plasmids pChi7122-1, pChi7122-2, and

pChi7122-3, previously named pAPEC-1, pAPEC-2, and pAPEC-

3 respectively, and a cryptic plasmid pChi7122-4 (Table 1), has

been used to undestand the role of large plasmids in the virulence

of ExPEC [12]. Specifically, we determined that both the nature of

plasmids and their combinations have an effect on the virulence

and the genetic diversity of ExPEC. Although we have clearly

determined that pChi7122-1 has a major role in systemic infection

of APEC in chickens, the role of the remaining plasmids remained

unclear.

Since pChi7122-2 and pChi7122-3 do not encode for common

ExPEC virulence factors [12], and their roles are considered as

minor in systemic infection in chickens [12], we hypothesized that

these plasmids could be important in persistence of this bacterial

strain in different stressful conditions encountered before and

during infections. Therefore, this study aimed to (1) fully sequence

and analyze the DNA of plasmids pChi7122-2, pChi7122-3, and

pChi7122-4 of APEC strain x7122; and (2) evaluate the

contribution of these plasmids, as well the plasmid pChi7122-1,

either individually or in combination, in the bacterial interaction

with a model human intestinal epithelial cell line, bile and acid

resistance, biofilm formation, and growth in iron-restricted

medium and in the presence of different carbon sources.

Moreover, since the plasmids can be carried by strains with

different backgrounds, we aimed to determine the effect of

different host strain backgrounds on plasmid-associated pheno-

types. This study presents for the first time the sequence of three

plasmids of APEC strain x7122 and provides new insights into the

genetic and phenotypic mechanisms that ExPEC may use for their

persistence and survival in stressful conditions.

Results and Discussion

Genome sequencing has made major contributions to our

knowledge of virulence and the evolution of pathogenic bacteria.

So far, virulence plasmids associated with ExPEC are ColV,

ColBM and Vir plasmids [20]; many of which are already fully

sequenced and have been determined as belonging mainly to the

IncFIB/FIIA backbone. Although PCR characterization of UPEC

and APEC plasmids has revealed the presence of plasmids from

other Inc groups [21], studies on their role in ExPEC has been

limited. Previously, we examined the role of the three large

plasmids of APEC x7122 in pathogenesis in chickens [12] and

Table 1. Strains and plasmids used in this study.

Strain/plasmid Relevant characteristicsa Reference

Strains

x7122 background

x7122 APEC O78:K80:H9, gyrA Nalr, Strr, Sxtr [79]

x7145 x7122 (x289:hisG-zee), rfb deleted by replacement with E. coli K-12 region at 45 min [10,80]

x7167 x7179 rfb+ (O111) prototroph by P1x2963 lysate x6206 Strain H30, O26:H11, SLT-1 [80]

x7193 x7179 rfb+ (O1), prototroph by P1x7112 lysate [10,80]

x7367 pChi7122-3, Nalr [12]

x7368 DpChi7122-1, D pChi7122-2, DpChi7122-3, Nalr [12]

x7394 pChi7122-1, Nalr [12]

x7392 pChi7122-2, Nalr, Strr, Sxtr [12]

x7561 pAPEC-1, pAPEC-2, Nalr, Strr, Sxtr [12]

x7562 pChi7122-1, pChi7122-3, Nalr [12]

x7274 pChi7122-2, pChi7122-3, Nalr, Strr, Sxtr [90]

E. coli K-12 background

x6092 E. coli K-12, Lac2 F2 Tcr [19]

x7346 x6092 pChi7122-1, Tcr [19]

x7347 x6092 pChi7122-2, Tcr, Strr, Sxtr [12]

x7348 x6092 pChi7122-3, Tcr [12]

Plasmids

pChi7122-1 103,275 pb plasmid of APEC x7122 [19,90]

pChi7122-2 82,676 pb plasmid of APEC x7122 [19]

pChi7122-3 56,676 pb plasmid of APEC x7122 [19]

pChi7122-4 4,300 pb plasmid of APEC x7122 This study

aNal
r

, nalidixic acid resistant; Tcr, tetracycline resistant; Strr, streptomycin resistant; Sxtr, Trimethoprim/sulfamethoxazole resistant.
doi:10.1371/journal.pone.0029481.t001

Large Plasmids and Bacterial Fitness
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sequenced the plasmid pChi7122-1 [19]. We were able to assign

roles for pChi7122-1 in the virulence in systemic infection of

bacteria; however the roles of pChi7122-2 and pChi7122-3 in

APEC x7122 were equivocal.

General sequence features of plasmids pChi7122-2,
pChi7122-3, and pChi7122-4

In this study, we present the whole DNA sequences of plasmids

pChi7122-2 (FR851303), pChi7122-3 (FR851304) and pChi7122-

4 (FR851305). The general sequence features of the three plasmids

are listed in the Table 2.

Plasmids pChi7122-2, pChi7122-3 and pChi7122-4 consist of

82,676 bp, 56,676 bp and 4,300 bp respectively (Fig. 1, Table 2)

and are predicted to encode 115, 86, and 3 coding sequences

(CDS) respectively (Table 2, Table S1 and S2); these CDSs include

the complete sequences for the iron acquisition system eitABCD on

pChi7122-2 and type IV fimbriae on pChi7122-3, which have

been previously shown to be present on these plasmids by PCR

[12]. Analysis of pChi7122-4 revealed 3 CDSs that were predicted

to encode plasmid replication and maintenance functions only

(Table 2, Fig. 1); consequently we excluded this plasmid from all

further experimental analysis.

We assessed the presence of eitA gene of pChi7122-2 and two

genes of pChi7122-3 (pilS and pilV) by PCR among 225

pathogenic E. coli strains from different origins, including 100

human E. coli strains isolated from the main clinical extra-intestinal

sources (50 UTI and 50 non-UTI), 80 APEC, and 45 human

enteric pathogenic E. coli. PCR results show that eitA was present

in 10% of non-UTI human isolates and 5% of APEC strains, but

was absent in other groups. The genes pilS and pilV of pChi7122-3

were detected in 8.75% of the APEC group and in 10% of human

UTI isolates, respectively. The low prevalence of pChi7122-2 (eitA)

and pChi7122-3 (pilS and pilV) genes among other ExPEC of

human and avian origin, as determined by PCR, could indicate

the recent acquisition of these genes by these E. coli strains,

enabling them to inhabit new niches.

Our past work has determined that plasmids pChi7122-2 and

pChi7122-3 are self-conjugative [12]. Herein, their sequences

analysis has revealed the presence of genes required for their

transfer (Fig. 1, Table S1 and S2). The transfer region of

pChi7122-2 is about 34 kb consisting of 24 tra and 9 trb genes

(Table S1) and is identical to the one of the virulence plasmid pAA

(FN554767.1; 99% identity with 92% coverage), whereas the tra

region of pChi7122-3 has the same organization as its equivalent

in E. coli conjugative plasmid IncI2 R721 (AP002527.1); it contains

11 tra/trb genes, grouped in two clusters separated by two pil genes

(Fig. 1, Table S2). pChi7122-3 also harbors genes nikB, nikC, and

nikA for relaxome formation involved in plasmid transfer [22,23]

(Fig. 1, Table S2).

Among the three plasmids, only pChi7122-2 carries antibiotic

resistance genes (MM2-101, MM2-102 and MM2-103) (Table S1).

These genes encode for a dihydropteroate synthase (sul1) [24], a

GCN5-related N-acetyl transferase [25] and a streptomycin 39-

adenylytransferase (SP-R) (aadA) [26], respectively. The pheno-

typic expression of streptomycin and sulfonamide (trimethoprim/

sulfamethoxazole) resistance in strains containing pChi7122-2 has

been determined by disk diffusion tests. Although streptomycin has

only limited current usage in clinical medicine, it remains

important for therapy of, and growth promotion in, animals and

bacterial disease control in plants [27]. It was suggested that

sulphonamide resistance genes can be transferred from commensal

bacteria via integrons, transposons or plasmids, into more virulent

bacteria in the intestine [28].

Comparative analysis of the pChi7122 plasmids with those in

the public databases using BLASTn showed that pChi7122-2

shares high homology with plasmids from Shigella sonnei (pEG356),

an urinary E. coli isolate (pHK01), EAEC (pAA), and K. pneumoniae

(pKF3-70), respectively (with 100% identity and 70% coverage).

The pChi7122-3 genome has shown homology with only one

plasmid, the E. coli plasmid R721 (with 99% identity and 90%

coverage), which includes the type IV fimbriae pil operon [29,30]

and shufflon [31,32]. Mauve alignment of pChi7122-2 and

pChi7122-3 with their respective homologous plasmids confirmed

these homologies (Fig. S1).

The plasmid pChi7122-2 and its homologous plasmids have a

4 kb region in common, which encodes for the ABC iron uptake

locus eitABCD (Fig. 2A), previously described in two other APEC

plasmids, pAPEC-O2-ColV [17] and pAPEC-O1-ColBM [15]. A

DNA comparison of the regions of eitABCD of the six plasmids has

shown that with the exception of pAPEC-O2-ColV, this region is

located downstream of the par region of plasmids and is flanked by

the transposon tnpA gene in pChi7122-2, pHK01, and pEG356

respectively and by an insertion sequence IS629 in pAPEC-O1-

ColBM (Fig. 2A) which could explain the dissemination of eitABCD

among genomes of these bacteria. We were unable to detect the

iron-uptake phenotype expression of eitABCD genes using CAS

agar medium [12], even though it was efficient in revealing those

of pChi7122-1 and chromosomally-encoded systems. Therefore in

this study, we extended the analysis by testing the growth of

strains, with and without the three plasmids, in iron-limited

medium alone or supplemented with either FeSO4, heme or

hemoglobin. Our results show that only pChi7122-1 increased the

growth of strains in iron-sequestered environments (Fig. S2). The

ability to acquire iron from heme and hemoglobin could be related

Table 2. Summary of general characteristics of the three sequenced plasmids of APEC x7122.

Plasmids Size (bp) Inc group GC% N6 ORFs Starting codons Gene function
virulence factors-
encoded ATB

pChi7122-2 82,676 IncFII 52.8 115 ATG (78.26%) GTG
(14.78%) TTG (6.08%)

18.26% (known and putative virulence
genes) 41.74% (involved in plasmid functions)
4.35% (ISs) 19.13% (CHP) 16.52% (HP)

EitABCD Strr, Sxtr

pChi7122-3 56,676 IncI2 42.7 86 ATG (86.04%) GTG
(6.8%) TTG (5.81%)

26.74% (known and putative virulence genes)
31.39% (involved in plasmid functions) 2.32%
(ISs) 8.14% (CHP) 31.39% (HP)

Type IV Pil fimbriae -

pChi7122-4 4,300 ColE2-like 49.3 3 ATG (100%) 66.66% (involved in plasmid functions) 33.34%
(CHP)

None -

ATB, antibiotic; Strr, streptomycin resistant; Sxtr, Trimethoprim/sulfamethoxazole resistant; -, absent.
doi:10.1371/journal.pone.0029481.t002
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to the autotransporter Tsh encoded by pChi7122-1 [33], which

has previously been reported to bind to red blood cells [34]. Future

studies are needed to determine conditions of expression of

eitABCD, such as under in vivo conditions.

New putative sugar utilization pathways identified in
pChi7122-2

An important aspect of pathogenesis is the ability of bacteria to

adapt their metabolism to the available nutrients by coordinating

their metabolism with their life cycle [35]. Recent reports have

shown that in the intestine, both commensal and enterohemor-

rhagic E. coli (EHEC) require multiple carbon metabolic pathways

[36,37].

In this study, DNA sequence analysis of pChi7122-2 has

revealed the presence of two systems of sugar utilization pathways.

This system, with two divergent operons, consists of a gene for a

starvation-sensing protein (pChiA) located in the opposite orienta-

tion to four successive genes pChiOTDR (Fig. 2B, 3). These genes

have no significant homology with DNA sequences of other E. coli

available on public databases, as determined by MegaBLASTn

search analysis, but share 94% homology (with 100% coverage)

with the chromosomal DNA sequence of genomes of Salmonella

Enteritidis (AM933172.1), Gallinarum (AM933173.1), Weltevre-

den (FR775220.1) and Agona (CP001138.1), respectively (Fig. 2B).

The sequence analysis of this region in these Salmonella serovars has

determined that, with the exception of S. Agona, in which the

pChiA-equivalent gene is truncated, the organization of the

pChiOTDR homologous genes in the genome of the four pathogens

is the same (Fig. 2B). The identities of the proteins translated by

these genes were between 86%–99% (Fig. 2B, Table S3, and Fig.

S3).

The putative functions and the predicted 3-D structures of the

pChiA and pChiOTDR gene products, determined by Blast-PSI and

HHpred [38], show that pChiA encodes for a bifunctional

dehydratase that utilizes both D-mannonate and D-altronate as

substrates [39] and pChiOTDR encode for a gluconate 5-

dehydrogenase, pChiO; an exonate sugar transport, pChiT; an

L-idonate 5 dehydrogenase, pChiD; and a regulator protein

GntR-like, pChiR, respectively (Table S3, Fig. 3A). Two promoter

regions, PpChiA and PpChi, with independent cAMP receptor

protein (CRP) binding boxes [40,41], were detected in the

promoter region of pChiA and pChiO (Fig. 3B). Bioinformatic

analysis indicated that pChiR is a putative transcriptional

regulator from GntR family [42]. In the absence of glucose, the

preferred carbon source for E. coli, the CRP would activate the

pChi7122-2 sugars pathways [40,41]; whereas pChiR would have

an opposite effect. It is known that colonic mucus contains several

sugar acids that represent an important source of nutrients and

that genes involved in the catabolism of N-acetylglucosamine,

sialic acid, glucosamine, gluconate, arabinose, and fucose are

expressed in both commensal E. coli and EHEC [36]. It has also

been reported that UPEC bacteria grown in urine express

enzymes for catabolism of sialic acid, gluconate, xylose, and

arabinose [43] and genes involved in the transport of gluconate

and related hexonates are up-regulated in S. Typhimurium in

macrophages [44], suggesting that the new pChi7122-2 sugar

pathways could also be important either in the pathogenesis of

APEC, as well as in Salmonella serovars Enteritidis, Gallinarum,

Weltevreden and Agona or in their persistence in different hosts.

Compared to the chromosomal E. coli K-12 L-idonic acid

pathway encoded by the gnTII genes, idnK idnDOTR [45], the

genes of the operon pChiOTDR of pChi7122-2 have no significant

homologies at the DNA level and share some sequence identity at

the protein level (Table 3); moreover, the position of the gene of L-

idonate 5 dehydrogenase is different in the two distinct gene

clusters. Intriguingly, the gluconate kinase gene, idnK, of GnTII

pathway [45] is absent in the pChi7122-2 pathway and is

substituted by the gene of the starvation sensing protein, rspA-like

[46] pChiA which is essential for survival of bacteria in limited

nutrient conditions. The gene encoding the regulatory protein

GntR in the GnTII pathways, exhibits no significant homology at

both DNA and protein levels with its counterpart in pChi7122-2

(pChiR) (Table 3). In this study, although we have shown that

strains have better growth in media with glucoronic acid than with

other sugars tested (Fig. S4), there were no significant differences

between strains with and without the plasmid pChi7122-2. The

Figure 1. Circular representation of pChi7122-2 (A), pChi7122-3 (B), and pChi7122-4 (C). The different rings represent (from outer to
inner) CDS which are color coded by functional group (ring 1 and 2), deviation from average G+C content (ring 3), and GC skew [(G2C)/(G+C); ring 4].
Colors represent the following: red, virulence-associated; green, plasmid transfer; yellow, plasmid replication; grey other functions; brown,
hypothetical protein.
doi:10.1371/journal.pone.0029481.g001
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functionality of the sugar utilization pathway genes located on

pChi7122-2 would be more apparent in gntII-operon-deleted

strains [45], or by evaluation of their expression under in vivo

conditions, such as using the selective capture of transcribed

sequences (SCOTS) method [47]. Future studies will be conducted

to determine the conditions of their expression and their eventual

role in both APEC and Salmonella serovars.

Diversity of plasmids-associated fitness phenotypes and
the effect of host strain background on their expression

The genomic diversity among ExPEC isolates has been

described and multiple factors have been linked to their virulence

[48,49]. However, a systematic analysis of ExPEC phenotypic

diversity has not been done previously. In this study, the large

plasmids-associated phenotypes related to fitness of ExPEC

bacteria as well the effect of host strain backgrounds were

investigated.

Intestines are suspected to be a primary reservoir of ExPEC

strains causing diseases in both humans [50] and chickens [5]. To

determine if large plasmids would increase the fitness of their

carriers in the gastrointestinal (GI) tract environment, we assessed

the ability of strains to colonize intestine cells and resist both acid

and bile, attributes that allow enteric bacteria to live and persist in

the intestine of their host [51].

APEC strain x7122 associates with and invades into

intestinal epithelial cells without affecting the distribution

of the tight junction protein ZO-1. Some APEC strains are

genetically similar to human ExPEC, especially to uropathogenic

E. coli (UPEC) [52], and could cause human diseases [53]. Herein,

we investigated the ability of APEC-derivative strains to associate

with, and invade into, human cells of the kind that may be

targeted by human ExPEC bacteria during their commensal life

cycle in the intestine. The intestine is suspected to be a reservoir of

ExPEC that cause infections in humans [50]. Since APEC strains

are now considered as potential food-borne pathogens that could

be transmitted to humans via poultry products [4,6,28], we aimed

to investigate the interaction of APEC-derivative strains with 3-D

organotypic models of human intestinal epithelial cells. The 3-D

model of intestinal epithelium used in this study has been shown

previously to mimic the in vivo parental tissue more closely than

monolayer cultures with regard to morphology and function [54].

The highly differentiated character of the 3-D intestinal cells is

reflected in the presence of distinct apical and basolateral polarity,

increased expression and better organization of tight junctions,

extracellular matrix, and brush border proteins, highly localized

expression of mucins, and multiple epithelial cell types relevant to

those found in vivo [55]. Our data showed that APEC-derivative

strains were able to associate with, and invade into, human

intestinal epithelial cells, and large plasmids did not have

significant effect on these characteristics (Fig. 4). Although tight

junctions efficiently restrict most microbes from penetrating into

deeper tissues and contain the microbiota, some pathogens have

developed specific strategies to alter or disrupt these structures as

part of their pathogenesis, resulting in either pathogen penetration,

or other consequences such as diarrhea. In this study, evaluation of

different APEC-derivative strains for their interaction with 3-D

human intestinal epithelial cells, showed that although these

strains attached and invaded into these cells, they did not disturb

their tight junctions, based on immunofluorescence evaluation

(Fig. 4). These data suggest that invasion of the intestine and

dissemination would not occur through intercellular transportation

of the bacteria, which could potentially disseminate through

transcellular transportation, a mechanism used by meningitis-

causing bacteria, including E. coli K1 to invade brain

microvascular endothelial cells (BMECs) [56]. These bacteria

could live as commensals in the intestines from where they shed

and cause diseases in different hosts or other sites of the same host.

Role of plasmids in bile and acid resistance. Mechanisms

associated with bile resistance in bacteria are LPS synthesis,

expression of efflux pump genes and regulatory genes such as

marAB and phoPQ [51]. In this study, we have shown that all wild-

type derived strains tested were resistant to deoxycholate (DOC),

one of the most abundant bile salts in humans (data not shown);

whereas the group of strains derived from E. coli K-12 behaved

differently (Fig. 5A). Although, E. coli K-12 was sensitive to the

bile, its plasmid derivative strains x7346 (pChi7122-1) and x7347

(pChi7122-2) had increased survival in LB agar media with 1%

(w/v) DOC as compared to their parent x6092. The strain x7348

(pChi7122-3) was as sensitive to bile as its parent strain x6092

(Fig. 5A). According to our results APEC x7122 strain better

tolerates the presence of bile salts in the media then E. coli K-12

which was sensitive to the detergent (Fig. 5, data of wild-type not

shown). The mechanism of resistance of APEC could be both LPS

and plasmid related. In fact, the detection of plasmid-associated

resistance in E. coli K-12 background but not in the wild-type

background strains, could be related to the presence of other

factors, including the LPS in these strains that has masked the

effect of plasmids on this phenomenon; this statement is supported

by the resistance of the rough mutant which is usually

hypersensitive to bile [57]. The mechanism of resistance

encoded by the plasmid pChi7122-1 could be associated with

proteins such as OmpT that was previously associated with bile

resistance in Vibrio cholerae [58] and ABC transport proteins that

are known to play a role in the protection of cells from toxic

compounds [59]. Since such factors are not located on pChi7122-

2, other factors predicted to be encoded by this plasmid, such as

TA modules could be involved in bile tolerance of bacteria; as TA

systems are now known to play an important role in bacterial stress

physiology [60,61,62]. To our knowledge, this is the first time that

plasmids have been shown to be associated with the bile resistance

of E. coli.

Acid resistance is important for bacterial survival in acidic

stomach or in foods with low pH [63]. Our results have shown that

plasmids do not have any effect on the growth of the wild-type

derived strains when grown in acidic medium for a short period

(12 hours), as the strains with and without plasmids grew similarly

(data not shown). However, at longer incubation times (18 hours),

strains behaved differently (Fig. 5B). Similar to the study by Lim et

al. [64] on the plasmid pO157 in E. coli O157, we have shown that

in the absence of its three plasmids, the APEC strain survived

better in acidic conditions than in their presence when incubated

for 18 h. Moreover, our study showed that although the plasmid

pChi7122-1, either alone or in combination with pChi7122-2 or

pChi7122-3, decreased the acid tolerance of bacteria, the presence

of pChi7122-3 had the opposite effect (Fig. 5B). Since pChi7122-1

and pO157 play a major role in the virulence of APEC [12] and E.

Figure 2. Comparison of physical and genetic maps for eitABCD and sugar pathway regions. The eitABCD region from pChi7122-2 was
compared to its equivalent in pHK01 (HM355591.1), pEG356 (FN594520.1), pAPEC-O2-ColV (NC_007675.1), pAA (FN554767.1), and pAPEC-O1-ColBM
(NC_009837.1) (A); and sugars pathways genome region pChiA pChiOTDR in pChi7122-2 to its equivalent found in the genomes of S. Enteritidis
(AM933172.1), S. Gallinarum (AM933173.1), S. Weltevreden (FR775220.1) and S. Agona (CP001138.1) respectively (B).
doi:10.1371/journal.pone.0029481.g002
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coli O157 [64] respectively, these findings could indicate that the

presence of plasmids exert a cost to bacterial fitness when exposed

for a long period (.18 hours) to acidic conditions, whereas

bacteria containing other plasmids such as pChi7122-3 in x7122

would have better survivability in these conditions. Elucidation of

the mechanism of acid tolerance associated with pChi7122-3 is

needed to fully understanding the persistence of E. coli in acidic

conditions.

Figure 3. Plasmid pChi7122-2 putative sugar utilization pathway. Illustration of the proposed biochemical pathway for putative sugar
utilization encoded by the operon pChiOTDR (A), the predicted 3D model and function of each enzyme are presented; and diagrammatic
representation of the genetic organization of the putative sugar utilization operon pChiA pChiOTDR (B). The two promoter regions identified are
indicated with arrows. Bioinformatic analysis indicated that pChiR may act as a transcriptional regulator of pChiOTDR genes. The promoter region
contains independent CRP binding boxes indicated in red. The promoter elements for pChiOTDR (Ppchi) located in the positive DNA strand are
underlined. The promoter elements for pChiA (PpChiA) in the negative strand are in bold and red without underlining.
doi:10.1371/journal.pone.0029481.g003
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Table 3. Comparison of the pChi7122-2-encoded sugar pathway operon with GntII L-idonic pathway of E. coli K-12.

L-idonic acid-like catabolism pathway of pChi7122-2 rspA pChiOTDR L-idonic acid catabolism pathway GntII of E. coli K-12 idnK idnDOTR

GI-Numbers Gene symbols Gene product DNA homology % AA identity/%positive Expect Gene (Accession no.)

MM2_107 pChiA Starvation sensing protein NSH - -

MM2_108 pChiO Gluconate 5-dehydrogenase NSH 48%/64% 1e-70 idnO (AAC77203.1)

MM2_109 pChiT The major facilitator superfamily protein NSH 23%/46% 0.033 idnT (AA77222.1)

MM2_110 pChiD L-idonate 5-dehydrogenase NSH 46%/69% 1e-97 idnD (NP_418688.1)

MM2_111 pChiR Regulatory protein GntR NSH None None idnR (NP_418685.1)

AA, amino acid; -, absent; NSH, no significant homology.
doi:10.1371/journal.pone.0029481.t003

Figure 4. Comparative of association and invasion of strains with 3-D INT-407 cells. Mean of Log CFU/ml and standard deviation of
bacteria association and invasion with cells (A) Representative confocal laser scanning micrographs showing association, and invasion of 3-D INT-407
cells with x7122 and derivatives (B). Bacteria are marked in green, while the blue and red colors represent cell nuclei labeled with DAPI and F-actin
cytoskeleton labeled with phalloidin, respectively; and ZO-1 staining of non-infected and infected 3-D INT-407 with plasmid-derivative strains (C).
Non-infected 3-D INT-407 aggregates (a) or 3-D INT-407 aggregates infected for 2 h with wild type (x7122) (b), DpChi7122-1,2,3 (x7368) (c),
pChi7122-1 (x7394) (d), pChi7122-2 (x7392) (e), pChi7122-3 (x7367) (f), pChi7122-1,2 (x7561) (g), pChi7122-1,3 (x7562) (h), and pChi7122-2,3 (x7274)
(I). The ZO-1 antigen is marked in green, while the blue color represents cell nuclei labeled with DAPI. Images are presented with (indicated as ‘‘2’’)
and without (indicated as ‘‘1’’) DAPI labeling for clarity purposes. Images are based on 4006magnifications. Arrows indicate the bacteria stained in
green; Abbreviations used are: pChi7122-1,2,3 = pChi7122-1, pChi7122-2, and pChi7122-3; pChi7122-1,2 = pChi7122-1 and pChi7122-2; pChi7122-
1,3 = pChi7122-1 and pChi7122-3; pChi7122-2-3 = pChi7122-2 and pChi7122-3.
doi:10.1371/journal.pone.0029481.g004
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Our study also confirmed the importance of the full expression

of O78-antigen LPS for the acid tolerance of E. coli [65], and

demonstrated that the nature of LPS had a minor effect on this

stress response (Fig. 5B).

Large plasmids increase biofilm formation at host

temperatures. Bacterial biofilm formation is a major concern

in both medical and industrial systems. Biofilm formation is

associated with many medically-important pathogenic bacteria, as

an estimated 65-80% of all human infections are thought to be

biofilm-related [66]. However, elucidating the mechanisms of

biofilm formation necessary for establishing strategies for their

prevention and treatments is becoming a matter of urgency.

ExPEC cells are found in biofilm-like communities in both

gastrointestinal [67] and urinary tracts [68] indicating the

importance of biofilms in the persistence of these bacteria. ExPEC

bacteria have to adapt to extreme temperature changes. In this

study, our strategy using three large plasmids, either individually or

in combination in both an APEC wild-type and an E. coli K-12

background, and different O-LPS at different temperatures, has

revealed new insights into biofilm formation of ExPEC. Altogether,

our data distinguished four groups of factor-driven biofilms,

including plasmidless-, plasmid-, O-LPS-, and rough LPS-mediated

biofilms in E. coli which differ in their expression conditions.

In general, the different strains tested formed more biofilms at

30uC than at 37uC or 42uC (Fig. 6A). Compared to the wild-type,

the plasmidless strain produced significantly more biofilm at 30uC
(P,0.05) (Fig. 6A). In the same conditions, the presence of the

three plasmids, either individually or in combinations in the

strains, reduced the level of biofilm formation to the level of the

wild-type strain (Fig. 6A). In contrary, at host temperatures (37u
and 42u) (Fig. 6A), the plasmidless strain produced less biofilm

than the wild-type strain, with the data being statistically

significant (P,0.05) at 42uC (Fig. 6A).

The biofilm formed by the plasmid-cured strain, highly

produced at 30uC (Fig. 6A), is probably promoted by no-plasmidic

factors preferentially expressed at 30uC and at early stage of

biofilm formation; among them curli required for development of

biofilm and adhesion [69]. Expression of biofilm in the

environment (30uC) would be beneficial for plasmidless strains;

in these conditions, biofilm will allow these bacteria to be in close

proximity with other bacterial species and acquire transmissible

genetic elements.

It has been shown that conjugative plasmids promote bacterial

biofilm formation by generating F-pili mating pairs, which is

important for early biofilm formation [70,71,72]. In this report, we

have shown that plasmid-driven biofilms are very complex and this

complexity is related to the nature of the plasmids, their

combinations, host strain backgrounds, and the temperature to

which the strains are exposed. The presence of the three plasmids

pChi7122-1, pChi7122-2, and pChi7122-3 in the wild-type strain

(Fig. 6A) and pChi7122-3 in the E. coli K-12 strain (Fig. 6B), had

increased biofilm formation at host temperature conditions, with

data being significant at 42uC (P,0.05) (Fig. 6B). The fact that

pChi7122-3-driven enhancement of bacterial biofilm was higher

than those of pChi7122-2 and pChi7122-1 in both wild-type and

the E. coli K-12 backgrounds could be related to not only the tra

genes expression [70,71,72] but also to the type IV fimbriae

encoded by pChi7122-3, which was previously associated with the

biofilm formation in enteroaggregative E. coli [73]. Plasmid-driven

biofilms could be essential in the virulence process by giving

bacteria a survival advantage in different niches of the host, which

could result in disease.

A controversy exists regarding the role of LPS in bacterial

biofilm formation [74,75]. In this study, we have shown that the

three plasmids pChi7122-1, pChi7122-2, and pChi7122-3 in wild-

type derivative strains with different O-LPS backgrounds behaved

differently in their biofilm formation (Fig. 6C). In absence of O78-

LPS, the rough strain produced significantly (P,0.0001) less

biofilm than its smooth wild-type strain at 30uC. Even though

substitution of O78-LPS with O111-LPS had little effect on

Figure 5. Bile and acid tolerance of strains. Bile sensitivity assay for E. coli K-12 and derivatives, no-plasmids (x6092), pChi7122-1 (x7346),
pChi7122-2 (x7347), and pChi7122-3 (x7348). Five-microliters of serial ten-fold dilutions of each strain were spotted on both LB and LB +1% (w/v)
DOC agar plates. The approximate numbers of bacteria present in each dilution are indicated on the right side of the plate (A). Percent acid survival
of wild-type derivative strains in acid shock for 18 hours (B). Abbreviations used are: pChi7122-1,2,3 = pChi7122-1, pChi7122-2, and pChi7122-3;
pChi7122-1,2 = pChi7122-1 and pChi7122-2; pChi7122-1,3 = pChi7122-1 and pChi7122-3; pChi7122-2-3 = pChi7122-2 and pChi7122-3.
doi:10.1371/journal.pone.0029481.g005
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biofilm formation, the substitution of O78-LPS with O1-LPS has

in contrary greatly enhanced biofilm formation in these bacteria at

30uC. Since the O1-LPS-driven enhancement of bacteria biofilm

occurs at 30uC condition and is repressed at host temperatures

(37uC/42uC), this indicates that its role could be more important

in the persistence of bacteria in the environment, and that the

temperature of 30uC in early O1-LPS-associated biofilm forma-

tion is necessary. The fact that O1-LPS-driven biofilm is not

highly formed at 37uC and 42uC (Fig. 6C), could be related to a

change in the LPS-O1 bilayer structure at higher temperature

[76,77,78] leading to the disturbance of the early biofilm formed.

To our knowledge, this is the first report on the effect of the nature

of LPS on biofilm formation.

Conclusion
A novel putative sugar utilization pathway operon that is not

present in other E. coli strains but found in Salmonella serovars, an

ABC iron transport system and a type IV fimbriae pil operon were

located on pChi7122-2 and pChi7122-3 respectively. Multiple

plasmid-encoded mechanisms, including toxin-antitoxin modules

and the novel sugar pathway could be important in the fitness and

persistence of APEC x7122.

Large plasmids were involved in bile resistance (pChi7122-1 and

pChi7122-2) when present in E. coli K-12 background and acid

tolerance (pChi7122-3) in the wild-type background. Four different

factor-driven biofilms, including plasmidless-, plasmid-, rough-LPS-,

and O-LPS-mediated were demonstrated. These multiple factor-

driven biofilms expressed at different temperatures could have

distinct functions. Some of them could be important in the

acquisition of genetic material and persistence of bacteria in the

environment; others could be involved in virulence. The genotypic

and phenotypic analysis of plasmid-derivative strains of an ExPEC

model strain x7122 (O78:K80:H9) revealed new insights into the

mechanisms of fitness of ExPEC and their diversity.

Materials and Methods

Bacterial strains and growth conditions
Most of the bacterial strains used in this study, listed in Table 1,

are derived from the highly virulent APEC strain x7122

(O78:K80:H9) [79] and were fully described in our previous

studies [10,12,80].

To evaluate the effect of the host strain background on plasmid-

associated phenotypes, we used three derivatives of x7122 with

different LPS profiles containing the three plasmids pChi7122-1,

pChi7122-2, and pChi7122-3; a rough mutant strain (O78-) of

APEC x7122, x7145; and two derivatives of x7145, x7167 and

x7193, which respectively express O111 and O1 antigens rather

than the native O78 antigen. We also used strains derived from an

E. coli K-12, x6092, containing either pChi7122-1, x7346;

pChi7122-2, x7347; or pChi7122-3, x7348 (Table 1, [10,12,80]).

Antibiotic susceptibility testing of strains was performed and

interpreted via disk diffusion method, as recommended by the

Clinical and Laboratory Standards Institute (CLSI) [81,82].

A collection of one hundred human strains isolated from the

main clinical extra-intestinal sources (50 UTI and 50 non-UTI)

[19], eighty APEC strains, and forty-five enteric E. coli strains

(from our collection) were used to study the distribution of

pChi7122-2 and pChi7122-3-associated genes among different

groups of pathogenic E. coli by PCR.

Figure 6. Effect of plasmids, O-LPS, and temperature on biofilm formation. Biofilm formation of different strains were compared at different
temperatures: x7122 and its plasmid derivatives strains: No-plasmids (x7368), pChi7122-1 (x7394), pChi7122-2 (x7392), pChi7122-3 (x7367),
pChi7122-1,2 (x7561), pChi7122-1-3 (x7562), and pChi7122-2,3 (x7274) (A), E. coli K-12 (x6092) and its derivatives: pChi7122-1 (x7346), pChi7122-2
(x7347), and pChi7122-3 (x7348) (B), and x7122 and its LPS derivative strains : rough mutant O78(-) (x7145), smooth strains with either O1-LPS (O1)
(x7193) or O111-LPS (O111) (x7167) (C) at either 30uC, 37uC, or 42uC.
doi:10.1371/journal.pone.0029481.g006
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Unless otherwise stated, bacteria were routinely grown in Luria

Bertani (LB) broth or on MacConkey agar supplemented with 1%

lactose at 37uC. Strains were stored as stock cultures at 280uC in

peptone-glycerol medium. All wild-type derivative strains grew

similarly in LB and reached the OD600 ,1.0 when incubated

overnight (O/N) at 37uC standing, except the strain x7561

(pChi7122-1, pChi7122-2) which had a slightly lower growth and

its OD600 was around 0.8 when grown in the same conditions.

Plasmid sequencing and annotation
The DNA sequences of pChi7122-2, pChi7122-3 and

pChi7122-4 plasmids were derived from contig sequences of the

whole genomic DNA of APEC x7122. The sequences were

manipulated to the standard of an ‘Improved High-Quality Draft’

[83]. The program Artemis [84] was used to identify the plasmids

and collate data. For each of the three plasmids all the sequence

gaps were closed by directed polymerase chain reaction (PCR) and

the products sequenced with big dye terminator chemistry on

ABI3730 capillary sequencers. All the plasmids were circularized

and contiguated using this method.

The DNA sequences were annotated to identify coding

sequences and repeat sequences in Artemis and the vector NTI

suite of programs was used to confirm the previous analysis. To

identify plasmids with similar sequences, pChi7122-2 (FR851303)

and pChi7122-3 (FR851304) were compared by BLASTn at

NCBI. Plasmid sequences of pEG356 (FN594520.1) from Shigella

sonnei, pHK01 (HM355591.1) from a urinary E. coli isolate, pAA

(FN554767.1) from EAEC, and pKF3-70 (FJ494913.1) from K.

pneumoniae, and R721 (AP002527.1) a trimethoprim and strepto-

mycin resistant plasmid from an E. coli were downloaded. Plasmid

sequences were aligned and then visualized using ACT and Mauve

v2.3.1 [85]. Schematic plasmid drawings were constructed using

DNAplotter [86].

Amino acid sequence and protein structural-based alignments

were performed using the CLC Free Workbench software tool (v.

6.1 CLC bio A/S, Aarhus, Denmark) and the web-based interface

for ESPript v.2.2 (http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.

cgi) [87], respectively. The 3-D structure of the proteins pChiA,

pChiT, pChiO, pChiD, and pChiR were predicted using position

specific iterative (PSI)- BLAST alignment and HHpred [38].

Prevalence of pChi7122-2 (eitA) and pChi7122-3 (pilS and
pilV) genes among avian and human pathogenic E. coli

One hundred human E. coli strains isolated from the main

clinical extra-intestinal sources (50 UTI and 50 non-UTI) [19],

eighty APEC strains, and forty-five enteric E. coli strains (from our

collection) were screened by PCR [19] for the presence of the eitA,

pilS, and pilV genes using the primers eitA F: 59-AACTGCGGC-

TATCAGGAGAC-39 and eitA R : 59-CAGGTCATATCCCA-

CAGCTT-39; pilS F: 59-CTTCTCTTTCTGCACACCGT-39

and pilS R: 59-TGTGATTGTAACGGAGCC-39; pilV F: 59-

TCTATACAGGCGAGTATTTA-39 and pilV R: 59-AATTCA-

TACCAGAATACTCA-39. The primers were designed from the

sequence of pChi7122-2 (eitA) and pChi7122-3 (pilS and pilV).

Growth comparison assays
The growth rates of strains were compared in iron-sequestered

medium using LB containing 100 mM of a,a9-dipyridyl alone or

supplemented with either Heme (Sigma, 600 mg ml21), hemoglo-

bin (Sigma, 60 mg ml21), or FeSO4 (Sigma, 20 mM: control). The

growth rates were also tested in minimal medium MM9 [12],

MM9 with thiamin (1 mg ml21) and 0.1% casamino acid, and

supplemented with glucose, lactose, arabinose, mannose, galac-

tose, glucuronic acid, or glucoronic acid (0.2%) as source of carbon

at 37uC shaking (180 rpm). The OD600 was recorded every hour

over 24-hour period.

Interaction of strains with 3-D INT-407 human epithelial
cells

3-D cultures of human INT-407 cells (ATCC CCL6) were used

as model intestinal epithelium and were prepared as previously

described [54]. Approximately 106 CFU of PBS-washed bacteria,

grown rotating to an OD600 1.0 in LB, were added to each well

(multiplicity of infection [MOI], 10). For bacterial association

assays, the 24-well plates were incubated at 37uC in 5% CO2 for

1 hour, and rinsed three times with PBS. PBS-0.1% (w/v)

deoxycholic acid sodium salt was added to each well, and samples

were diluted and spread on MacConkey medium plates for

enumeration by viable colony counting. For invasion assays,

extracellular bacteria were killed following the initial 1-h

incubation period by an additional 1-h incubation in medium

containing gentamicin (100 mg/ml; Sigma-Aldrich). Cells were

then washed 36with PBS and lysed. Bacterial titers in the lysates

were determined by serial dilutions and plating on MacConkey

agar. The results were expressed as the Log10CFU/ml.

Antibodies specific for O78-LPS (Denken Seiken) and the

human tight junction protein ZO-1 (Invitrogen) were used for

confocal laser scanning microscopy (CLSM) imaging. Antibodies

were of porcine and mouse origins, respectively, and were used at

a dilution of 1:500 (anti-O78-LPS) and 1:100 (anti-ZO-1). Goat

anti-porcine and anti-mouse secondary antibodies labeled with

Alexa Fluor 555 (Invitrogen) were used to detect the bound

primary antibodies anti-O78-LPS and anti-ZO-1 respectively and

were diluted 1:500 in blocking solution (8% bovine serum

albumin, 0.05% Triton-X100 in DPBS). Cell nuclei and the F-

actin cytoskeleton were visualized with 49, 6-diamidino-2-pheny-

lindole hydrochloride (DAPI) and phalloidin (Invitrogen), respec-

tively. The fixation and staining of 3-D aggregates was performed

as described previously [88]. Optical sections of the 3-D

aggregates were obtained using a Zeiss LSM 510 Duo laser

scanning microscope equipped with detectors and filter sets for

monitoring emissions of the selected fluorophores. Images were

acquired using a Plan-Neofluar 406/1.3 oil DIC objective and

were analyzed with the Zeiss LSM software package. Axiovision

4.8 software from Carl Zeiss was used to further process collected

images.

Sensitivity of strains to deoxycholate (DOC) and acid
shock tolerance

To determine the ability of bacteria to survive at sub-lethal bile

concentration, different strains were grown rotating to an OD600

1.0 in LB medium. Five-microliters of serial ten-fold dilutions of

each strain were spotted on both LB agar and LB agar containing

1% (w/v) DOC plates and incubated overnight at 37uC.

For acid shock assays, bacterial cells were grown at 37uC in LB

broth, pH 7, O/N standing. Cultures adjusted to the same OD600

of 1.0 were diluted 1:1,000 in LB, pH 2.5, and incubated at 37uC
with gentle shaking (50 rpm). Samples were cultured by direct

plating on LB agar after 8 h and 18 h to determine the percent

survival following acid stress. As controls, bacteria were also grown

in LB, pH 7 in the same conditions to determine if the growth of

bacteria was affected.

Biofilm formation assay
Biofilm formation assays were performed in 96-well polystyrene

microtiter plates (Becton Dickinson, Franklin Lakes, NJ) [89]. In
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brief, strains were grown to stationary phase in LB at 37uC and

then diluted 1:100 in LB supplemented with 0.1% (w/v) L-glucose.

Aliquots of 200 mL for each dilution were dispensed per well into a

microtiter plate (four wells/strain). Each strain was tested in

quadruplicate, wells containing sterile medium were used as

negative controls. Plates were sealed with parafilm and cultured

standing either at 30uC, 37uC or 42uC for 5 days to mimic the

environmental and body temperature of humans and chickens,

respectively. The media of the plates were then decanted, and the

plates were washed twice with sterile PBS. Microplates were then

stained with 200 mL of 1% (w/v) Crystal Violet for 30 min,

followed by washing twice with PBS to remove unbound dye. After

drying, dye-containing adherent cells were resolubilized with

200 mL of 30% (v/v) acetic acid solution. The absorbance was

measured at 570 nm in an ELISA reader (SpectraMax M2,

Molecular Devices). All tests were carried out at least three times,

and the results were averaged.

Statistical analysis
Data were analyzed by one-way analysis of variance (ANOVA),

followed by Bonferroni’s multiple-comparison test (GraphPad

Prism software, version 5.07). Differences between average values

were also tested for significance by performing an unpaired, two-

sided Student t test. The levels of significance (P values) are

reported and values #0.05 were taken to be significant.

Supporting Information

Figure S1 Plasmids genomes comparison. Mauve pairwise

nucleotide comparison of the complete pChi7122-2 DNA sequence

to that of pEG356 (FN594520.1), pHK01 (HM355591.1), pAA

(FN554767.1), and pKF3-70 (FJ494913.1) (A) and pChi7122-3

DNA sequence to that of R721 (AP002527.1). The colored boxes

represent homologous segments completely free of genomic

rearrangements. These boxes are connected by lines between

genomes. Blocks below the center line indicate regions with inverse

orientation. Regions outside blocks lack homology between

genomes. White regions indicate the sequence specific to a genome.

(TIF)

Figure S2 Comparison of growth rates of bacteria in
iron-restricted media. E. coli K-12 (x6092) and its derivatives:

pChi7122-1 (x7346), pChi7122-2 (x7347), and pChi7122-3

(x7348) were grown in LB medium containing 2,29-dipyridyl

(- iron) or supplemented with either FeSO4 (control), Heme, or

Hemoglobin at 37uC for 24 h.

(TIF)

Figure S3 Multiple amino acid sequence alignment.
pChiD, pChiO, pChiT, and pChiA of pChi7122-2 were aligned

with their homologous proteins from other bacteria. Arrows

indicate b sheets; spirals a helixes and TT loops.

(TIF)

Figure S4 Comparison of growth rates of bacteria in the
presence of different carbon sources. The wild-type strain

x7122 and its derivatives: No-plasmids (x7368), pChi7122-1

(x7394), pChi7122-2 (x7392), pChi7122-3 (x7367) were tested

for growth in either strict MM9 (A) or MM9 containing thiamin

and casamino acid (B) without sugar, or with different sugars

(glucose, lactose, arabinose, mannose, galactose, glucoronic acid,

or glucoronic acid).

(TIF)

Table S1 Summary of information about the coding
sequences of pChi7122-2. In this table, we present details of all

coding sequences found in pChi7122-2.

(DOC)

Table S2 Summary of information about the coding
sequences of pChi7122-3. In this table, we present details of all

coding sequences found in pChi7122-3.

(DOC)

Table S3 Putative functions of pChi7122-2-encoded
sugar pathways genes. In this table, we present the putative

functions of pChiA, pChiD, pChiT, pChiO, and pChiR genes of the

sugar pathway encoded by pChi7122-2.

(DOC)
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