202 research outputs found
Importance of Fluctuations in Light on Plant Photosynthetic Acclimation
The acclimation of plants to light has been studied extensively, yet little is known about the effect of dynamic fluctuations in light on plant phenotype and acclimatory responses. We mimicked natural fluctuations in light over a diurnal period to examine the effect on the photosynthetic processes and growth of Arabidopsis (Arabidopsis thaliana). High and low light intensities, delivered via a realistic dynamic fluctuating or square wave pattern, were used to grow and assess plants. Plants subjected to square wave light had thicker leaves and greater photosynthetic capacity compared with fluctuating light-grown plants. This, together with elevated levels of proteins associated with electron transport, indicates greater investment in leaf structural components and photosynthetic processes. In contrast, plants grown under fluctuating light had thinner leaves, lower leaf light absorption, but maintained similar photosynthetic rates per unit leaf area to square wave-grown plants. Despite high light use efficiency, plants grown under fluctuating light had a slow growth rate early in development, likely due to the fact that plants grown under fluctuating conditions were not able to fully utilize the light energy absorbed for carbon fixation. Diurnal leaf-level measurements revealed a negative feedback control of photosynthesis, resulting in a decrease in total diurnal carbon assimilated of at least 20%. These findings highlight that growing plants under square wave growth conditions ultimately fails to predict plant performance under realistic light regimes and stress the importance of considering fluctuations in incident light in future experiments that aim to infer plant productivity under natural conditions in the field
Development of pGEMINI, a Plant Gateway Destination Vector Allowing the Simultaneous Integration of Two cDNA via a Single LR-Clonase Reaction
Gateway technology has been used to facilitate the generation of a large number of constructs for the modification of plants for research purposes. However, many of the currently available vectors only allow the integration of a single cDNA of interest into an expression clone. The ability to over-express multiple genes in combination is essential for the study of plant development where several transcripts have a role to play in one or more metabolic processes. The tools to carry out such studies are limited, and in many cases rely on the incorporation of cDNA into expression systems via conventional cloning, which can be both time consuming and laborious. To our knowledge, this study reports on the first development of a vector allowing the simultaneous integration of two independent cDNAs via a single LR-clonase reaction. This vector “pGEMINI” represents a powerful molecular tool offering the ability to study the role of multi-cDNA constructs on plant development, and opens up the process of gene stacking and the study of gene combinations through transient or stable transformation procedures
Glyceraldehyde-3-phosphate dehydrogenase subunits A and B are essential to maintain photosynthetic efficiency
Atg7-Mediated Autophagy Is Involved in the Neural Crest Cell Generation in Chick Embryo
Autophagy plays a very important role in numerous physiological and pathological events. However, it still remains unclear whether Atg7-induced autophagy is involved in the regulation of neural crest cell production. In this study, we found the co-location of Atg7 and Pax7+ neural crest cells in early chick embryo development. Upregulation of Atg7 with unilateral transfection of full-length Atg7 increased Pax7+ and HNK-1+ cephalic and trunk neural crest cell numbers compared to either Control-GFP transfection or opposite neural tubes, suggesting that Atg7 over-expression in neural tubes could enhance the production of neural crest cells. BMP4 in situ hybridization and p-Smad1/5/8 immunofluorescent staining demonstrated that upregulation of Atg7 in neural tubes suppressed the BMP4/Smad signaling, which is considered to promote the delamination of neural crest cells. Interestingly, upregulation of Atg7 in neural tubes could significantly accelerate cell progression into the S phase, implying that Atg7 modulates cell cycle progression. However, β-catenin expression was not significantly altered. Finally, we demonstrated that upregulation of the Atg7 gene could activate autophagy as did Atg8. We have also observed that similar phenotypes, such as more HNK-1+ neural crest cells in the unilateral Atg8 transfection side of neural tubes, and the transfection with full-length Atg8-GFP certainly promote the numbers of BrdU+ neural crest cells in comparison to the GFP control. Taken together, we reveal that Atg7-induced autophagy is involved in regulating the production of neural crest cells in early chick embryos through the modification of the cell cycle
A systematic review of the relationship between subchondral bone features, pain and structural pathology in peripheral joint osteoarthritis
Introduction: Bone is an integral part of the osteoarthritis (OA) process. We conducted a systematic literature review in order to understand the relationship between non-conventional radiographic imaging of subchondral bone, pain, structural pathology and joint replacement in peripheral joint OA. Methods: A search of the Medline, EMBASE and Cochrane library databases was performed for original articles reporting association between non-conventional radiographic imaging-assessed subchondral bone pathologies and joint replacement, pain or structural progression in knee, hip, hand, ankle and foot OA. Each association was qualitatively characterised by a synthesis of the data from each analysis based upon study design, adequacy of covariate adjustment and quality scoring. Results: In total 2456 abstracts were screened and 139 papers were included (70 cross-sectional, 71 longitudinal analyses; 116 knee, 15 hip, six hand, two ankle and involved 113 MRI, eight DXA, four CT, eight scintigraphic and eight 2D shape analyses). BMLs, osteophytes and bone shape were independently associated with structural progression or joint replacement. BMLs and bone shape were independently associated with longitudinal change in pain and incident frequent knee pain respectively. Conclusion: Subchondral bone features have independent associations with structural progression, pain and joint replacement in peripheral OA in the hip and hand but especially in the knee. For peripheral OA sites other than the knee, there are fewer associations and independent associations of bone pathologies with these important OA outcomes which may reflect fewer studies; for example the foot and ankle were poorly studied. Subchondral OA bone appears to be a relevant therapeutic target. Systematic review: PROSPERO registration number: CRD 4201300500
Stimulating photosynthetic processes increases productivity and water use efficiency in the field
Previous studies have demonstrated that independent stimulation of either electron transport or RuBP regeneration can increase the rate of photosynthetic carbon assimilation and plant biomass. In this paper, we present evidence that a multi-gene approach to simultaneously manipulate these two processes provides a further stimulation of photosynthesis. We report on the introduction of the cyanobacterial bifunctional enzyme fructose-1, 6- bisphosphatase/sedoheptulose-1,7-bisphosphatase or overexpression of the plant enzyme sedoheptulose-1,7-bisphosphatase, together with expression of the red algal protein cytochrome c6, and show that a further increase in biomass accumulation under both glasshouse and field conditions can be achieved. Furthermore, we provide evidence that stimulation of both electron transport and RuBP regeneration can lead to enhanced intrinsic water use efficiency under field conditions
Overexpression of the Rieske FeS protein of the Cytochrome b 6 f complex increases C4 photosynthesis in Setaria viridis.
C4 photosynthesis is characterised by a CO2 concentrating mechanism that operates between mesophyll and bundle sheath cells increasing CO2 partial pressure at the site of Rubisco and photosynthetic efficiency. Electron transport chains in both cell types supply ATP and NADPH for C4 photosynthesis. Cytochrome b 6 f is a key control point of electron transport in C3 plants. To study whether C4 photosynthesis is limited by electron transport we constitutively overexpressed the Rieske FeS subunit in Setaria viridis. This resulted in a higher Cytochrome b 6 f content in mesophyll and bundle sheath cells without marked changes in the abundances of other photosynthetic proteins. Rieske overexpression plants showed better light conversion efficiency in both Photosystems and could generate higher proton-motive force across the thylakoid membrane underpinning an increase in CO2 assimilation rate at ambient and saturating CO2 and high light. Our results demonstrate that removing electron transport limitations can increase C4 photosynthesis
Association of temporal factors and suicides in the United States, 2000–2004
The purpose of the study was to examine the association of temporal factors, in particular days of the week and seasons of the year and death from suicide in the United States.
Data were pooled from the Multiple Cause of Death Files. Hierarchical logistic regression models were fitted to all deaths occurring in 2000 through 2004 by suicide.
The incidence of suicide was significantly higher on Wednesdays, compared to Sunday. Specifically, individuals were 99% more likely to kill themselves on Wednesday than on Sunday. Suicides were more prevalent in the summer months, and they were less likely to occur in winter. The state suicide rate significantly elevated individual suicide risk. The results held even after controlling for the potentially confounding effects of socio-economic and demographic variables at both the individual and state levels.
It was concluded that the observed association between seasonality and suicide cannot be discounted as a mere coincidence. Future research ought to focus on integrating individual level data and contextual variables when testing for seasonality effects
De Novo Transcriptome of Safflower and the Identification of Putative Genes for Oleosin and the Biosynthesis of Flavonoids
Safflower (Carthamus tinctorius L.) is one of the most extensively used oil crops in the world. However, little is known about how its compounds are synthesized at the genetic level. In this study, Solexa-based deep sequencing on seed, leaf and petal of safflower produced a de novo transcriptome consisting of 153,769 unigenes. We annotated 82,916 of the unigenes with gene annotation and assigned functional terms and specific pathways to a subset of them. Metabolic pathway analysis revealed that 23 unigenes were predicted to be responsible for the biosynthesis of flavonoids and 8 were characterized as seed-specific oleosins. In addition, a large number of differentially expressed unigenes, for example, those annotated as participating in anthocyanin and chalcone synthesis, were predicted to be involved in flavonoid biosynthesis pathways. In conclusion, the de novo transcriptome investigation of the unique transcripts provided candidate gene resources for studying oleosin-coding genes and for investigating genes related to flavonoid biosynthesis and metabolism in safflower
The 'PUCE CAFE' Project: the First 15K Coffee Microarray, a New Tool for Discovering Candidate Genes correlated to Agronomic and Quality Traits
Background: Understanding the genetic elements that contribute to key aspects of coffee biology will have an impact on future agronomical improvements for this economically important tree. During the past years, EST collections were generated in Coffee, opening the possibility to create new tools for functional genomics. Results: The "PUCE CAFE" Project, organized by the scientific consortium NESTLE/IRD/CIRAD, has developed an oligo-based microarray using 15,721 unigenes derived from published coffee EST sequences mostly obtained from different stages of fruit development and leaves in Coffea Canephora (Robusta). Hybridizations for two independent experiments served to compare global gene expression profiles in three types of tissue matter (mature beans, leaves and flowers) in C. canephora as well as in the leaves of three different coffee species (C. canephora, C. eugenoides and C. arabica). Microarray construction, statistical analyses and validation by Q-PCR analysis are presented in this study. Conclusion: We have generated the first 15 K coffee array during this PUCE CAFE project, granted by Genoplante (the French consortium for plant genomics). This new tool will help study functional genomics in a wide range of experiments on various plant tissues, such as analyzing bean maturation or resistance to pathogens or drought. Furthermore, the use of this array has proven to be valid in different coffee species (diploid or tetraploid), drastically enlarging its impact for high-throughput gene expression in the community of coffee research
- …
