5,048 research outputs found
Recommended from our members
Orientation of tabular mafic intrusions controls convective vigour and crystallization style
The microstructure in basaltic dykes is significantly different to that in sills and lava lakes of the same bulk composition. For a given width of intrusion (or depth of lava lake), vertical tabular bodies are coarser-grained than horizontal bodies, with an invariant plagioclase shape across the intrusion. When comparing samples from sills and dykes for which the average grain size is the same, the dyke samples contain fewer small grains and fewer large grains than the sill samples. In contrast, the variation of median clinopyroxene-plagioclase-plagioclase dihedral angles in dykes correlates precisely with that observed in sills and is a function of the rate of diffusive heat loss. These patterns can be accounted for if the early stages of crystallization in dykes primarily involve the growth of isolated grains suspended in a well-mixed convecting magma, with the final stage (during which dihedral angles form) occurring in a crystal-rich static magma during which heat loss is primarily diffusive. In contrast, crystallization in sills occurs predominantly in marginal solidification fronts, suggesting that any convective motions are insufficient to entrain crystals from the marginal mushy layers and to keep them suspended while they grow.
An exception to this general pattern is provided by members of the Mull Solitary Dykes, which propagated 100-1000 km SE from the Mull Palaeogene Igneous Centre, Scotland, through the shallow crust. These dykes, where sampled > 100 km from Mull, have a microstructure indistinguishable from that of a sill of comparable thickness. We suggest that sufficient nucleation and crystallization occurred in these dykes to increase the viscosity sufficiently to damp convection once unidirectional flow had ceased
Nasal Lipopolysaccharide Challenge and Cytokine Measurement Reflects Innate Mucosal Immune Responsiveness
<div><p>Background</p><p><b>P</b>ractical methods of monitoring innate immune mucosal responsiveness are lacking. Lipopolysaccharide (LPS) is a component of the cell wall of Gram negative bacteria and a potent activator of Toll-like receptor (TLR)-4. To measure LPS responsiveness of the nasal mucosa, we administered LPS as a nasal spray and quantified chemokine and cytokine levels in mucosal lining fluid (MLF).</p><p>Methods</p><p>We performed a 5-way cross-over, single blind, placebo-controlled study in 15 healthy non-atopic subjects (n = 14 <i>per protocol</i>). Doses of ultrapure LPS (1, 10, 30 or 100μg/100μl) or placebo were administered by a single nasal spray to each nostril. Using the recently developed method of nasosorption with synthetic adsorptive matrices (SAM), a series of samples were taken. A panel of seven cytokines/chemokines were measured by multiplex immunoassay in MLF. mRNA for intercellular cell adhesion molecule-1 (ICAM-1) was quantified from nasal epithelial curettage samples taken before and after challenge.</p><p>Results</p><p>Topical nasal LPS was well tolerated, causing no symptoms and no visible changes to the nasal mucosa. LPS induced dose-related increases in MLF levels of IL-1β, IL-6, CXCL8 (IL-8) and CCL3 (MIP-1α) (AUC at 0.5 to 10h, compared to placebo, p<0.05 at 30 and 100μg LPS). At 100μg LPS, IL-10, IFN-α and TNF-α were also increased (p<0.05). Dose-related changes in mucosal ICAM-1 mRNA were also seen after challenge, and neutrophils appeared to peak in MLF at 8h. However, 2 subjects with high baseline cytokine levels showed prominent cytokine and chemokine responses to relatively low LPS doses (10μg and 30μg LPS).</p><p>Conclusions</p><p>Topical nasal LPS causes dose-dependent increases in cytokines, chemokines, mRNA and cells. However, responsiveness can show unpredictable variations, possibly because baseline innate tone is affected by environmental factors. We believe that this new technique will have wide application in the study of the innate immune responses of the respiratory mucosa.</p><p>Key Messages</p><p>Ultrapure LPS was used as innate immune stimulus in a human nasal challenge model, with serial sampling of nasal mucosal lining fluid (MLF) by nasosorption using a synthetic absorptive matrix (SAM), and nasal curettage of mucosal cells. A dose response could be demonstrated in terms of levels of IL-1β, IL-6, CXCL8 and CCL3 in MLF, as well as ICAM-1 mRNA in nasal curettage specimens, and levels of neutrophils in nasal lavage. Depending on higher baseline levels of inflammation, there were occasional magnified innate inflammatory responses to LPS.</p><p>Trial Registration</p><p>Clinical Trials.gov <a href="https://clinicaltrials.gov/ct2/show/NCT02284074?term=nasal+lipopolysaccharide&rank=1" target="_blank">NCT02284074</a></p></div
Impact of physiological noise correction on detecting blood oxygenation level-dependent contrast in the breast.
Physiological fluctuations are expected to be a dominant source of noise in blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) experiments to assess tumour oxygenation and angiogenesis. This work investigates the impact of various physiological noise regressors: retrospective image correction (RETROICOR), heart rate (HR) and respiratory volume per unit time (RVT), on signal variance and the detection of BOLD contrast in the breast in response to a modulated respiratory stimulus. BOLD MRI was performed at 3 T in ten volunteers at rest and during cycles of oxygen and carbogen gas breathing. RETROICOR was optimized using F-tests to determine which cardiac and respiratory phase terms accounted for a significant amount of signal variance. A nested regression analysis was performed to assess the effect of RETROICOR, HR and RVT on the model fit residuals, temporal signal-to-noise ratio, and BOLD activation parameters. The optimized RETROICOR model accounted for the largest amount of signal variance ([Formula: see text] = 3.3 ± 2.1%) and improved the detection of BOLD activation (P = 0.002). Inclusion of HR and RVT regressors explained additional signal variance, but had a negative impact on activation parameter estimation (P < 0.001). Fluctuations in HR and RVT appeared to be correlated with the stimulus and may contribute to apparent BOLD signal reactivity.This work was supported by the NIHR Cambridge Biomedical Research Centre, the Cambridge Experimental Cancer Medicine Centre and the CRUK-EPSRC Cancer Imaging Centre in Cambridge and Manchester (C197/A16465 and C8742/A18097)
JOINT COMMITMENT, COERCION AND FREEDOM IN SCIENCE Conceptual Analysis and Case Studies
International audienceThis paper deals with the Ethics of group life in the sciences, if not directly with the policy of science that might evolve from it, and more precisely with the issue of democracy within scientific life
The Ctf18 RFC-like complex positions yeast telomeres but does not specify their replication time
Peer reviewedPreprin
Food-web structure in relation to environmental gradients and predator-prey ratios in tank-bromeliad ecosystems
Little is known of how linkage patterns between species change along environmental gradients. The small, spatially discrete food webs inhabiting tank-bromeliads provide an excellent opportunity to analyse patterns of community diversity and food-web topology (connectance, linkage density, nestedness) in relation to key environmental variables (habitat size, detrital resource, incident radiation) and predators: prey ratios. We sampled 365 bromeliads in a wide range of understorey environments in French Guiana and used gut contents of invertebrates to draw the corresponding 365 connectance webs. At the bromeliad scale, habitat size (water volume) determined the number of species that constitute food-web nodes, the proportion of predators, and food-web topology. The number of species as well as the proportion of predators within bromeliads declined from open to forested habitats, where the volume of water collected by bromeliads was generally lower because of rainfall interception by the canopy. A core group of microorganisms and generalist detritivores remained relatively constant across environments. This suggests that (i) a highly-connected core ensures food-web stability and key ecosystem functions across environments, and (ii) larger deviations in food-web structures can be expected following disturbance if detritivores share traits that determine responses to environmental changes. While linkage density and nestedness were lower in bromeliads in the forest than in open areas, experiments are needed to confirm a trend for lower food-web stability in the understorey of primary forests
Mechanical Stress Inference for Two Dimensional Cell Arrays
Many morphogenetic processes involve mechanical rearrangement of epithelial
tissues that is driven by precisely regulated cytoskeletal forces and cell
adhesion. The mechanical state of the cell and intercellular adhesion are not
only the targets of regulation, but are themselves likely signals that
coordinate developmental process. Yet, because it is difficult to directly
measure mechanical stress {\it in vivo} on sub-cellular scale, little is
understood about the role of mechanics of development. Here we present an
alternative approach which takes advantage of the recent progress in live
imaging of morphogenetic processes and uses computational analysis of high
resolution images of epithelial tissues to infer relative magnitude of forces
acting within and between cells. We model intracellular stress in terms of bulk
pressure and interfacial tension, allowing these parameters to vary from cell
to cell and from interface to interface. Assuming that epithelial cell layers
are close to mechanical equilibrium, we use the observed geometry of the two
dimensional cell array to infer interfacial tensions and intracellular
pressures. Here we present the mathematical formulation of the proposed
Mechanical Inverse method and apply it to the analysis of epithelial cell
layers observed at the onset of ventral furrow formation in the {\it
Drosophila} embryo and in the process of hair-cell determination in the avian
cochlea. The analysis reveals mechanical anisotropy in the former process and
mechanical heterogeneity, correlated with cell differentiation, in the latter
process. The method opens a way for quantitative and detailed experimental
tests of models of cell and tissue mechanics
Satellite remote sensing data can be used to model marine microbial metabolite turnover
Sampling ecosystems, even at a local scale, at the temporal and spatial resolution necessary to capture natural variability in microbial communities are prohibitively expensive. We extrapolated marine surface microbial community structure and metabolic potential from 72 16S rRNA amplicon and 8 metagenomic observations using remotely sensed environmental parameters to create a system-scale model of marine microbial metabolism for 5904 grid cells (49 km2) in the Western English Chanel, across 3 years of weekly averages. Thirteen environmental variables predicted the relative abundance of 24 bacterial Orders and 1715 unique enzyme-encoding genes that encode turnover of 2893 metabolites. The genes’ predicted relative abundance was highly correlated (Pearson Correlation 0.72, P-value <10−6) with their observed relative abundance in sequenced metagenomes. Predictions of the relative turnover (synthesis or consumption) of CO2 were significantly correlated with observed surface CO2 fugacity. The spatial and temporal variation in the predicted relative abundances of genes coding for cyanase, carbon monoxide and malate dehydrogenase were investigated along with the predicted inter-annual variation in relative consumption or production of ~3000 metabolites forming six significant temporal clusters. These spatiotemporal distributions could possibly be explained by the co-occurrence of anaerobic and aerobic metabolisms associated with localized plankton blooms or sediment resuspension, which facilitate the presence of anaerobic micro-niches. This predictive model provides a general framework for focusing future sampling and experimental design to relate biogeochemical turnover to microbial ecology
Phylogenetic Codivergence Supports Coevolution of Mimetic Heliconius Butterflies
The unpalatable and warning-patterned butterflies _Heliconius erato_ and _Heliconius melpomene_ provide the best studied example of mutualistic Müllerian mimicry, thought – but rarely demonstrated – to promote coevolution. Some of the strongest available evidence for coevolution comes from phylogenetic codivergence, the parallel divergence of ecologically associated lineages. Early evolutionary reconstructions suggested codivergence between mimetic populations of _H. erato_ and _H. melpomene_, and this was initially hailed as the most striking known case of coevolution. However, subsequent molecular phylogenetic analyses found discrepancies in phylogenetic branching patterns and timing (topological and temporal incongruence) that argued against codivergence. We present the first explicit cophylogenetic test of codivergence between mimetic populations of _H. erato_ and _H. melpomene_, and re-examine the timing of these radiations. We find statistically significant topological congruence between multilocus coalescent population phylogenies of _H. erato_ and _H. melpomene_, supporting repeated codivergence of mimetic populations. Divergence time estimates, based on a Bayesian coalescent model, suggest that the evolutionary radiations of _H. erato_ and _H. melpomene_ occurred over the same time period, and are compatible with a series of temporally congruent codivergence events. This evidence supports a history of reciprocal coevolution between Müllerian co-mimics characterised by phylogenetic codivergence and parallel phenotypic change
- …
