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Abstract 

 

The unpalatable and warning-patterned butterflies Heliconius erato and Heliconius 

melpomene provide the best studied example of mutualistic Müllerian mimicry, thought – but 

rarely demonstrated – to promote coevolution. Some of the strongest available evidence for 

coevolution comes from phylogenetic codivergence, the parallel divergence of ecologically 

associated lineages. Early evolutionary reconstructions suggested codivergence between 

mimetic populations of H. erato and H. melpomene, and this was initially hailed as the most 

striking known case of coevolution. However, subsequent molecular phylogenetic analyses 

found discrepancies in phylogenetic branching patterns and timing (topological and temporal 

incongruence) that argued against codivergence. We present the first explicit cophylogenetic 

test of codivergence between mimetic populations of H. erato and H. melpomene, and re-

examine the timing of these radiations. We find statistically significant topological 

congruence between multilocus coalescent population phylogenies of H. erato and H. 

melpomene, supporting repeated codivergence of mimetic populations. Divergence time 

estimates, based on a Bayesian coalescent model, suggest that the evolutionary radiations of 

H. erato and H. melpomene occurred over the same time period, and are compatible with a 

series of temporally congruent codivergence events. This evidence supports a history of 

reciprocal coevolution between Müllerian co-mimics characterised by phylogenetic 

codivergence and parallel phenotypic change. 
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Introduction 

 

The Neotropical butterfly genus Heliconius is highly diverse, with 54 species [1], 

many of which can be subdivided into multiple wing pattern morphs, or races [2]. These 

unpalatable [3,4] butterflies have diversified to form regional Müllerian [5] mimicry 

complexes [6], each involving multiple species with a convergently evolved [7] predator 

warning pattern [4,8]. For almost 150 years, biologists have debated whether the remarkable 

adaptive radiation of the Heliconius was driven by reciprocal ecological associations, a 

process we would now call coevolution [9]. Unpalatable Müllerian [5] co-mimics share the 

cost of educating inexperienced predators [4] (unlike palatable Batesian [6] mimics, which 

may “parasitize” their unpalatable models [10]). According to Müller’s original model [5], 

two unpalatable co-mimics will both gain in fitness by their resemblance, though the ratio of 

these fitness gains will be proportionate to the ratio of their population sizes; giving greater 

fitness benefits to a rarer population (since a more abundant co-mimic is predicted to lose a 

greater number of individuals to encounters with inexperienced predators) [10]. It has been 

suggested that mimicry (and, particularly, mutualistic Müllerian mimicry [10]) may provide 

some of the most favourable conditions for coevolution, which has been defined (in the strict 

sense) as reciprocal evolutionary change [11] under mutualistic or competitive selection [12]. 

Therefore, mimetic wing pattern evolution among Heliconius butterflies may provide key 

evidence regarding the importance of coevolution in adaptive radiation [9,13]. 

The parallel wing pattern radiations of H. erato and H. melpomene have been the 

primary case study in the debate over coevolution between Müllerian co-mimics [2,13-15]. 

Across the Americas, each species is divided into approximately 30 morphs [2]. With few 

exceptions, the wing patterns of H. melpomene and H. erato match in every region where 
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they co-occur [2] (Figure 1). The two species are reciprocally monophyletic [16] and do not 

hybridise [17]. Therefore mimicry between them has involved convergence at the genetic and 

phenotypic level [7,18]. Purifying selection against intra-species hybrids with unusual wing 

patterns [4] acts with assortative mating [19] to generate partial reproductive isolation 

between the parapatric morphs [14], potentially showing speciation in action [2,6,20].  

Codivergence is the parallel divergence of ecologically associated lineages within two 

phylogenies [21], and is one predicted outcome of coevolution [10,22]. Codivergence may 

not, in itself, prove coevolution in the strict sense [13]. However, codivergence can be 

considered some of the strongest available evidence for coevolution [13,22], since, as Page 

[21] puts it, “it is difficult to imagine that [codivergence] can occur without at least some 

degree of coevolution”. Topological and temporal congruence (similarity of branching 

pattern and timing, respectively) between the phylogenies of H. erato and H. melpomene, 

compatible with a history of codivergence, would therefore support their coevolution 

[2,13,14,23] (in reference to the Pleistocene refugium hypothesis, of Brown et al.1974, 

Sheppard et al. [2] suggested that coevolution between H. erato and H. melpomene may have 

been aided by population isolation, but see [24] for a critical review). In contrast, a lack of 

topological or temporal congruence would suggest that coevolution did not occur (as 

previously suggested [14,25,26]).  

Despite considerable discussion of phylogenetic branching patterns [2,14,26] and 

timing [14,25,26], and an early biogeographic character-based analysis [14], there has been 

no previous test of codivergence between the mimetic populations of H. erato and H. 

melpomene using methods from cophylogenetic analysis (reviewed in [21]), which were 

developed specifically for this purpose. Cophylogenetic analysis seeks to reconstruct histories 

between associated entities that can be represented by a pair of phylogenies (such as genes 

and species, parasites and their hosts, populations and biogeographic regions [21], or mimics 
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and models [27]) to determine whether there is statistically significant evidence for 

codivergence between these associated phylogenies (as described below). We present the first 

explicit cophylogenetic test for codivergence between mimetic populations of H. erato and H. 

melpomene, using multilocus coalescent [28,29] phylogenies, and re-examine divergence 

times, based on the Bayesian multilocus coalescence model [29] and a recently published 

fossil-calibrated butterfly molecular clock [30]. 

One of the greatest challenges for phylogenetic reconstruction of recent radiations 

with low sequence divergence, such as that of the Heliconius, is the incomplete sorting of 

ancestral polymorphisms among divergent populations [31]. Incomplete lineage sorting can 

cause individual gene trees to conflict with each other and with the true population tree. A 

related problem is that individuals sampled from divergent lineages may not form 

reciprocally monophyletic clades on an individual gene tree, or on a population tree built 

using gene sequence concatenation or gene tree consensus methods [32]. Coalescent methods 

are designed to take individual gene histories into account by modelling the processes of 

mutation and inheritance, specifically, the coalescence of sampled genes, back through a gene 

tree, to their most recent common ancestor (reviewed by Rosenberg and Nordborg [31]). 

Coalescent phylogenetic methods reconstruct the relationships between divergent 

populations, that are partially to completely genetically isolated [33,34], by optimally 

reconciling the histories of multiple gene loci within one population-level tree [28,29]. 

Coalescent methods have rarely been applied to heliconian population genetics [25], and have 

not previously been used to reconstruct the phylogenies of H. erato and H melpomene. Here 

we use coalescent [29] and character support [35] methods to delimit monophyletic 

populations of H. erato and H. melpomene, among individuals sampled at the level of 

country, biogeographic region, and morph (Table S1).  Phylogenetic relationships [28,29] and 

divergence times [29] for these populations are reconstructed using Bayesian [29] and 
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parsimony based (Minimise Deep Coalescence, MDC [28]) coalescent methods. These 

phylogenies provide the basis for cophylogenetic tests of topological congruence, conducted 

across the set of phylogenetic estimates returned by the coalescent analyses. Estimated 

branching patterns, cophylogenetic histories, and divergence times are presented and 

discussed, based primarily on phylogenies of the country level mimetic populations, which 

received the highest support for monophyly from the character based [35] and Bayesian 

coalescent [29] analyses.  

 

Materials and methods 

 

Study system 

The taxon set (Table S1) included eight pairs of mimetic wing pattern morphs from H. 

erato and H. melpomene (as well as the morphs H. erato chestertonii and H. melpomene 

plesseni, whose co-mimics were not included in this study), sampling populations from the 

major South American biogeographic regions (East and West of the Andes) and seven 

countries [25,26] (Figure 1). Twenty-two related species [16,25,26,36] were also included, to 

place and date the population radiations of H. erato and H. melpomene within the wider 

radiation of the Heliconius. These species, and morphs of H. erato and H. melpomene, were 

selected for their coverage of the four included gene loci. 

 

Molecular data and analyses 

Phylogenetic reconstructions were based on a DNA sequence dataset sampled from 

four unlinked gene loci (mitochondrial cytochrome c oxidase, COI and COII, and nuclear 

mannose 6-phosphate isomerase, Mpi, and triose-phosphate isomerase, Tpi) spanning 3533 

base pairs. DNA sequences were downloaded from GenBank (accession numbers and source 
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studies Table S1). Sequences of each gene locus were aligned using MUSCLE [37]. 

Alignments for individual gene loci were used in Maximum likelihood (ML) phylogenetic 

analyses, implemented in TREEFINDER [38], to produce individual gene trees as input for 

the MDC [28] coalescent phylogenetic analyses (described below). The ML phylogenetic 

analyses were conducted using the best-fit substitution model for each gene, selected by 

jModelTest 0.1.1 [39] under the Akaike Information Criterion (AIC) [40]. Sequences for the 

four included gene loci were also concatenated to produce a multilocus alignment (Table S3).  

Population genetic statistics were estimated based on the multilocus alignment, using 

SITES [41]. These statistics included the average pairwise sequence divergence within a 

population and an effective population size parameter, θ, estimated as the product of effective 

population size and mutation rate (θ = 4 Neμ where Ne = effective population size and μ is the 

neutral mutation rate [42,43]). Two tests of population monophyly were performed, on the 

multilocus alignment, for specimens of H. erato and H. melpomene grouped at the level of 

country, biogeographic region, morph or species. First, monophyly was assessed with 

Shimodaira-Hasegawa (SH) tests [35] on monophyly-constrained ML trees, using 

TREEFINDER. This test compared the support for each population level using the AIC, 

which evaluates the fit of a statistical model to the data against the number of parameters 

imposed by that model – in this case, the number of constraints required for monophyly at the 

given population level. Since the AIC is a measure of information loss, the preferred 

phylogenetic hypothesis will be the one with the lowest AIC value. Incongruence length 

difference (ILD) tests, conducted using PAUP* 4.0b10 [44], indicated significant 

incongruence between the nuclear loci for both H. erato and H. melpomene (P = 0.01 each 

case), so the nucleotide substitution model was partitioned by gene locus (COI, GTR+I+G; 

COII, HKY+I+G; Mpi, GTR+G; Tpi, HKY+G). The second test of population monophyly 
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was based on Bayesian multilocus coalescent phylogenies reconstructed for each 

geographical sampling level (and is described below). 

Coalescent population phylogenies were reconstructed by minimising the number of 

deep gene coalescences [28] in Mesquite [45] and using a Bayesian multi-population 

coalescent model in *BEAST [29], part of the BEAST 1.6.1 package [46]. Such methods, 

which are based on a explicit model of gene lineage coalescence, have been found to 

accurately reconstruct population level phylogenies and are robust to low levels of gene flow 

[33,34]. MDC [28,45] phylogenies were each reconstructed using a heuristic, population 

level tree search, which incorporated the branch lengths of the four gene trees, did not auto-

resolve gene tree polytomies, used subtree pruning and regraft (SPR) branch-swapping, and 

stored up to 100 equally good trees at each search step.  Bayesian coalescent analyses were 

based on partitioned nucleotide substitution models, selected under the Bayesian Information 

Criterion (COI, HKY+I+G; COII, HKY+I+G; Mpi, HKY+G; Tpi, HKY+G). The focal 

*BEAST analyses were run using a relaxed log-normal molecular clock (selected based on 

Bayes factor comparisons against an, otherwise identical, analysis run with a strict molecular 

clock), allowing the mutation rate to vary between branches of the phylogeny [46]. A Yule 

prior was specified for the branching process of the population tree. Since the two 

mitochondrial gene loci (COI and COII) are non-recombining, a linked tree was specified for 

these loci in the *BEAST analyses [46]. Each *BEAST analysis was run with a Markov chain 

Monte Carlo (MCMC) chain length of 10
8 

steps, parameter sampling every 10
4
 steps, and a 

conservative burn-in of 25%. Effective sample size (ESS) values, for the posterior 

distribution of each parameter, were assessed to check chain convergence in each *BEAST 

run. Output from *BEAST was analysed using the programs Tracer [46] and FigTree 1.3.1 

(A. Rambaut, http://tree.bio.ed.ac.uk/software/figtree/). The MDC and Bayesian coalescent 

population phylogenies were used as input for the cophylogenetic analyses (described below).  
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The Bayesian phylogenies also provided the basis for the second test of population 

monophyly. In this test, hypotheses of population divergence (at the level of country or 

morph versus species) were tested by comparing the coalescent likelihood [29] and 

population tree posterior [46] calculated under the Bayesian multi-population coalescent 

model [29]. The coalescent likelihood calculates the probability of each gene tree g given the 

population tree S, as       



Sb

bb tNgLPSgP , where b denotes the branches of the species 

tree S,  gLb  is the implied history of g over b, and  tNb
 is the function for effective 

population size through time [29]. The population tree posterior is the sum of that tree’s log 

likelihood and log prior probability, plus the log prior probability densities for any other 

included priors [46]. For each of these parameters, Tracer was used to calculate the mean 

value across the MCMC samples (excluding the burn-in) as well as the 95% Bayesian 

credibility interval (BCI), which is the shortest interval containing 95% of the sampled 

values. This preferred phylogenetic hypothesis, in this test, is the one with the highest 

coalescent likelihood and tree posterior. Comparing these parameter values between 

population trees allowed us to evaluate independent phylogenetic estimates for each 

geographical sampling level (and so did not require nested hypotheses of population 

monophyly, as does the Bayesian coalescent method for population delimitation of Yang and 

Rannala [47] for example). The Bayesian coalescent analysis was based on a reduced dataset 

consisting of those country level populations which were sampled at all four gene loci, 

according to the requirements of *BEAST. Biogeographic region was not included as a 

population level in the Bayesian coalescent analyses, due to the unavailability of gene 

sequences with sufficient coverage of the four included loci. 

Population divergence times were estimated under the Bayesian coalescent model 

[29], which estimates and incorporates phylogenetic branching patterns and effective 

population sizes, using a relaxed log-normal molecular clock with a fossil-calibrated rate of 
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0.01909 substitutions per site per million years [30]. Such methods, which explicitly model 

gene lineage coalescence, are expected to give relatively accurate estimates of divergence 

times compared, for example, to estimates from individual or concatenated gene loci [48]. 

The time-calibrated substitution rate was set for one reference locus (COI) and specified as a 

prior for the 3 remaining loci (COII, Mpi, Tpi), after Heled and Drummond [29]. This 

analysis produced tree topologies identical to those of the *BEAST analyses (described 

above), in which no time-calibrated substitution rate was specified (there, the reference locus 

rate and priors for the other loci were set to 1, giving branch lengths in units of substitutions 

per site).  

 

Cophylogenetic analyses 

The MDC and Bayesian coalescent populations phylogenies of H. erato and H. 

melpomene were used in cophylogenetic analyses, conducted using TreeMap 3 [49] and Jane 

3 [50]. These analyses tested for statistically significant topological congruence between the 

two phylogenies, compatible with a history of codivergence between the mimetic 

populations. Cophylogeny mapping reconstructs histories that explain the similarities and 

differences between associated phylogenies given a cost regime for the recoverable historical 

events [50,51]. This is achieved by mapping current ecological associations (e.g. between 

mimics and models) back into the internal nodes of one phylogeny (e.g. that of the model) to 

reconstruct a cophylogenetic history (e.g. the history of mimicry between two species). In our 

context, the recoverable historical events are codivergence (parallel divergence of mimetic 

lineages), duplication (divergence of mimic lineages without model divergence), model 

switch (divergence of a mimic lineage onto an additional model lineage), and loss (absence of 

a mimic on a model lineage where it would otherwise be expected).   

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
12

.6
82

9.
1 

: P
os

te
d 

25
 J

an
 2

01
2



11 
 

Cophylogeny mapping in Jane uses heuristics to find solutions that minimise the 

overall cost of a historical reconstruction given a cost regime. The default event costs are zero 

(0) for a codivergence event, one (1) for duplication and model switch events, and two (2) for 

loss events. TreeMap 3 attempts to find a Pareto set of solutions, that is, all the histories that 

could be optimal, given the input phylogenies and associations, under a range of event cost 

regimes. This range is very permissive: codivergence is set at 0 cost and all the other costs are 

assumed to be positive, but do not need to be specified. Statistical analysis can then be 

performed (in both programs) to test whether the cost of a historical reconstruction is 

significantly lower than expected by chance, by generating a pseudo-random sample of 

minimal costs from a null distribution of problem instances with the same model phylogeny. 

The null distribution is generated by randomising repeatedly either the leaf associations or the 

branching order of the associate (mimic) tree. Thus there are two null hypotheses we might 

reject: either (a) that the current associations between model and mimic are not a 

consequence of a history of coevolution with the model phylogeny, and (b) the branching 

order of the mimic tree is not dependent on the branching order of the model tree. We prefer 

the latter test as it accounts for differences in probability of different tree shapes, but we 

conducted both tests for completeness and comparability with other studies. 

Müllerian co-mimics may benefit from a shared warning pattern to different degrees 

[2,15]. H. erato has several characteristics, independent of hypothetical divergence times, 

which suggest that it has had the dominant role in its mimicry relationship with H. 

melpomene (Eltringham, 1916 cited in [15]). These include greater current [15], and possibly 

historical [25], abundance, greater gregariousness, a wider geographic distribution, and pupal 

mating [15]. Therefore, we treated H. erato as the model and H. melpomene as the mimic in 

our main cophylogeny mapping analyses, conducted using TreeMap and Jane. For 

comparison, these analyses were also repeated with a reversed model-mimic relationship.   
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An additional pair-wise distance correlation test of topological congruence was 

performed in TreeMap 3. This test compares the significance of correlations of pair-wise 

distances between leaves, for associated clades in the two phylogenies, against a distribution 

of such measures estimated by randomising subtrees of the mimic phylogeny. 

To ensure that the results of the cophylogenetic analyses were not exclusive to our 

coalescent population phylogenies, a cophylogenetic pair-wise distance correlation test (as 

described above) was performed on recent, genome-wide, amplified fragment length 

polymorphism (AFLP) phylogenies of H. erato and H. melpomene [26] and on phylogenies 

reconstructed from a recently published ten-gene dataset [18] which included five linked 

genes involved in heliconian wing colour pattern determination. To produce the input for 

these cophylogenetic analyses, the topologies of the published AFLP phylogenies [26] were 

replicated and the ten-gene dataset [18] was downloaded from GenBank (accession numbers 

from Table S1 in Hines et al. [18]) and re-analysed. For the ten-gene dataset, MUSCLE was 

used to produce separate gene locus alignments for H. erato (plus its relatives H. himera and 

H. clysonymus) and H. melpomene (plus its relatives H. cydno, H. ismenius and H. numata). 

Alignments for each gene locus were then concatenated to produce two multilocus 

alignments: one including all ten genes and the other containing only the five colour pattern 

genes. A maximum likelihood phylogeny was then reconstructed for each multilocus 

alignment in TREEFINDER, using a partitioned nucleotide substitution model with the best-

fit substitution model for each gene selected by jModelTest under the AIC. For each of these 

phylogenies, monophyletic clades of each wing pattern morph were then collapsed to a single 

leaf, to avoid pseudo-replication of mimicry associations. 

 

Results 
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Population phylogenetics 

Shimodaira-Hasegawa (SH) character support tests [35] on monophyly-constrained 

maximum likelihood (ML) trees could not reject population monophyly at the level of 

country, biogeographic region, or morph for H. erato or H. melpomene (P > 0.4 in all cases). 

Taking into account the number of parameters imposed by each monophyly constraint, using 

the Akaike Information Criterion [40] (AIC), country was the favoured monophyly level for 

the sampled within-species populations (AIC scores: species = 44033, countries = 47500, 

regions = 47780, morphs = 47502). Coalescent likelihood mean (clm) and population tree 

posterior (ptp) values under a Bayesian multi-population coalescent model [29] also favoured 

population divergence at the level of country (corresponding phylogeny Figure S1) over 

divergence at the level of species or morph (corresponding phylogeny Figure S2): country 

level clm = 1774 [1685 to 1862]; ptp = -17478 [-17598 to -17359]; species level clm = 1220 

[1130 to 1310], ptp = -18287 [-18399 to -18179];  morph level clm = 1701 [1613 to 1788], 

ptp = -17617 [-17732 to -17503]. 

Monophyly of sampled morph populations (at least at the level of country) is 

supported by the gene sequence data and provides the most probable coalescent history for 

the sampled gene loci. This concurs with the greater clustering of individuals into 

monophyletic country level populations observed on recent genome-wide AFLP phylogenies, 

relative to phylogenetic estimates based on three concatenated mitochondrial loci [26]. These 

results (see also [14,26]) suggest that the wing pattern morphs sampled from multiple 

countries (here H. erato hydara, H. erato petiverana, H. melpomene melpomene and H. 

melpomene rosina) may be non-monophyletic. However, neutral markers for recently 

diverged populations that can experience ongoing low-level gene flow (including those used 

in this study) may show relatively low levels of phylogenetic structure [18] and we note that 

the character support analyses were unable to reject monophyly of the higher population 
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levels of biogeographic region or morph. Based on the character support and Bayesian 

coalescent analyses, we therefore focussed our cophylogenetic analyses on the country level 

populations, which received the highest monophyly support. However, phylogenies for 

region and morph level populations, which received lesser support, were also analysed. 

 

Topological congruence between the population phylogenies of H. erato and H. melpomene 

To account for phylogenetic uncertainty, we conducted cophylogenetic analyses 

across the set of phylogenies returned by the coalescent analyses (listed in Table 1). Across 

these MDC and Bayesian coalescent population phylogenies, the overwhelming indication is 

of significant topological congruence (Table 1). The cophylogenetic analyses suggest that, in 

almost all cases, there are more codivergence events between the mimetic populations of H. 

erato and H. melpomene than would be expected by chance if their phylogenies were 

independent (e.g. Figure 3).  Figure 3 shows an example pair of phylogenies from this set of 

phylogenetic estimates with similarly high congruence (see Table 1). Reconciling the 

phylogeny of H. melpomene with that of H. erato indicates remarkable topological 

congruence, with eight codivergence events out of out of a possible eleven, two duplications 

followed by model switches, and one loss. Interestingly, we still obtain highly significant 

congruence between the phylogenies when the mimic-model relationship is reversed (Table 

S2). 

The pair-wise distance correlation test also showed significant congruence at the roots 

of the H. erato and H. melpomene phylogenies, for the majority of our phylogenetic estimates 

(Table 1), suggesting that the phylogenies have been highly dependent on each other 

throughout their history.  

Pair-wise distance correlation tests conducted on the recent AFLP phylogenies of 

Quek et al. [26] (Figure S3) and on phylogenies reconstructed from a recently published ten-
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gene dataset which includes five colour pattern genes [18] (Figures S4 and S5) also suggest 

significant topological congruence between the radiations of H. erato and H. melpomene 

(Table 1), contrary to the conclusions of these authors. 

 

Temporal congruence between the population phylogenies of H. erato and H. melpomene 

We estimated average uncorrected sequence divergence (average pairwise 

substitutions per site, excluding gaps and indels) at 0.0245 within H. erato and 0.0153 within 

H. melpomene (excluding other, putatively incipient, species). Thus, the average uncorrected 

sequence divergence among individuals sampled from H. melpomene is considerably lower 

than (62% of) that estimated for H. erato, as previously suggested [14]. However, the 

effective population size parameter for H. melpomene, measured as the product of effective 

population size and mutation rate (θ = 4 Neμ), was estimated at 41% to 63% of that for H. 

erato, see also [25]: Watterson’s [42] estimate of θ was 0.1058 for H. erato and 0.0429 for H. 

melpomene, the pairwise nucleotide diversity estimate of θ was 0.0245 for H. erato and 

0.0153 for H. melpomene, with each estimate of θ calculated as an average per base pair, with 

gaps, indels and sequences for putatively incipient species excluded [41]. Effective 

population size is known to be positively correlated with average genetic diversity. Therefore, 

the lower average pairwise genetic diversity of H. melpomene, relative to H. erato, is an 

expected consequence of a lower effective populations size (e.g. see [43]), and is compatible 

with similar origination dates for the sampled clades of H. melpomene and H. erato, as 

discussed below.  

In results similar to those of Flanagan et al. [25], average uncorrected sequence 

divergence between H. erato and the closely related species H. hecalesia (0.0605) was 

greater than that between H. melpomene and its close relative, H. cydno (0.0303), or that 

between H. melpomene and the silvaniforms (0.0512), which form the outgroup to H. 
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melpomene plus the H. cydno group [16]. Divergence times estimated on our Bayesian 

coalescent phylogenies of the Heliconius (Figures S1 and S2) using a fossil-calibrated 

butterfly molecular clock [30], also suggest that the split between H. hecalesia and H. erato is 

older than that between H. cydno and its H. melpomene sister clade, as previously suggested 

[25] (as well as that between H. melpomene – plus the H. cydno group – and the 

silvaniforms). However, like the population genetic results discussed above, the Bayesian 

divergence estimates suggest temporal congruence between the radiations of H. erato and H. 

melpomene (Figure 3), contrary to [25].  Of the codivergence events reconstructed for the 

MDC phylogenies of Figure 3, for example, 95% Bayesian Credibility Intervals overlap 

where they are available. A historical reconstruction incorporating the estimated divergence 

times on the Bayesian country level phylogeny finds five codivergence events out of a 

maximum of eight (Figure S6). 

 

Discussion 

 

Evidence for codivergence 

Our coalescent population phylogenies for H. erato and H. melpomene (e.g. Figure 2; 

Figures S1 and S2) have many features in common with previous phylogenetic estimates [14] 

[26], including a strong signal from biogeographic region (East or West of the Andes). The 

MDC coalescent phylogenies represented in Figure 2, for example, shares major topological 

features with recent, genome-wide, AFLP phylogenies of H. erato and H. melpomene [26] 

(Figure S3). These features include a relatively basal split, within each species, between two 

clades; one clade containing eastern and western populations of, mimetic, H. erato hydara / 

H. melpomene melpomene plus the populations of the other western morphs (mimetic, H. 

erato petiverana / H. melpomene rosina and H. erato cyrbia / H. melpomene cythera), the 
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other clade containing the remaining eastern populations of H. e. hydara / H. m. melpomene 

plus populations of the other eastern mimetic morphs. Within the solely eastern clades, a 

basal split between two major sub-clades is also shared with the recent AFLP phylogenies; 

one sub-clade containing H. e. hydara / H. m. melpomene and the French Guianan population 

of, mimetic, H. erato erato / H. melpomene thelxiopeia, the other sub-clade containing 

populations of, mimetic: H. erato lativitta / H. melpomene malleti, H. erato emma / H. 

melpomene aglaope, H. erato etylus / H. melpomene ecuadoriensis and H. erato favorinus / 

H. melpomene amaryllis.  

Cophylogenetic analyses, conducted across the set of coalescent phylogenetic 

reconstructions, give an overall picture of statistically significant topological congruence 

between the evolutionary radiations of H. erato and H. melpomene co-mimics (contrary to 

previous suggestions [14,26]) (Table 1). In particular, all phylogenetic estimates for the, best 

supported, country level populations are compatible with a history of repeated codivergence 

between mimetic populations. 

In the interpretation of their AFLP phylogenies, Quek et al. [26] emphasised elements 

of incongruence between the topologies for H. erato and H. melpomene. They [26] noted, 

specifically, that the earliest branching lineages within each species did not represent co-

mimetic morphs (these were H. erato etylus sampled from East Ecuador, which instead falls 

within the eastern clade of our Figure 2, and H. melpomene nanna sampled from Brazil, 

which was not included in our coalescent analyses).  

However, a cophylogenetic analysis conducted on these recent AFLP phylogenies 

[26] also indicates that patterns of evolutionary branching among co-mimics are significantly 

more similar than expected by chance (Table 1; Figure S3), despite elements of incongruence 

such as those described above. This suggests that an early lack of phylogenetic resolution 

[14] and as well as the complexity of more recent estimates of phylogenetic branching 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
12

.6
82

9.
1 

: P
os

te
d 

25
 J

an
 2

01
2



18 
 

patterns [26] have previously concealed significant topological congruence between the 

phylogenies of H. erato and H. melpomene, which is revealed by quantitative cophylogenetic 

analysis. 

Phylogenies of H. erato and H. melpomene based on a total-evidence reanalysis of the 

complete ten-gene dataset of Hines et al. [18] also show significant topological congruence 

(Table 1; Figure S4), and biogeographic clustering patterns complementary to those of the 

coalescent population phylogenies illustrated in Figures 2. Similar reanalyses of only the five 

colour pattern genes from this dataset [18] are less able to cluster individuals of the same 

morph and show reduced biogeographic signal but also indicate statistically significant 

topological congruence between phylogenies of H. erato and H. melpomene co-mimics 

(Table 1; Figure S5). 

As expected for recent evolutionary radiations of populations that still experience low 

level gene flow, phylogenetic reconstructions for H. erato and H. melpomene are subject to 

some uncertainty, and there are differences between phylogenetic estimates based on 

different gene partitions (e.g. Figures S4 and S5), taxon partitions, and methodologies (e.g. 

the MDC and Bayesian phylogenetic estimates shown in Figures 2 and S1, respectively). 

However, several topological features are common to phylogenetic estimates based on 

different methodologies and data partitions (as discussed above) and the consistent result that 

emerges when we consider these various phylogenetic estimates is one of statistically 

significant topological congruence in the branching patterns of co-mimetic populations within 

these two species. 

To be compatible with codivergence, ecologically associated phylogenies must be 

both topologically and temporally congruent [49]. For example, the phylogenies of H. erato 

and H. melpomene might show topological but not temporal congruence if wing patterns 

arising from an earlier radiation (previously suggested to be that of H. erato [14,25]) were 
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secondarily converged upon during a later, but topologically similar, radiation by a mimic 

(previously suggested to be H. melpomene) [15]. Previous analyses have generally suggested 

that the phylogenies of H. erato and H. melpomene were temporally incongruent. In his 

influential paper of 1996 [14], Brower estimated that two eastern clades within H. erato and 

H. melpomene were of similar ages (150,000 – 200,000 Y), based on uncorrected average 

within-clade sequence divergence. However, his estimation that a key divergence between 

populations East and West of the Andes occurred earlier in H. erato (1.5-2 MYA) than in H. 

melpomene (65,000 YA) [14] has been taken as evidence against codivergence of the two 

species [14,23]. In the same vein, Flanagan et al. [25] suggested that H. erato was 

approximately twice as old as H. melpomene, based on corrected genetic divergences from 

their nearest relatives (thought to be Heliconius hecalesia and Heliconius cydno, 

respectively). These apparent discrepancies in divergence times have previously been taken 

as evidence against coevolution of H. erato and H. melpomene [14,23]. 

As in previous studies [14], we find that H. melpomene shows lower genetic diversity 

than H. erato, as measured by the average uncorrected pair-wise divergence between 

individuals. However, population genetic comparisons indicate that the effective population 

size (estimated as θ, the product of effective population size and mutation rate) of H. 

melpomene is smaller than that of H. erato (observed here and also by Flanagan et al. [25]). 

The effective population size is the size of an idealized breeding population that would 

experience the same effects of random mutation as a real population under study [52]. 

Effective population size is generally positively related to, but less than, the census 

population size [53]. Therefore field observations suggesting that H. melpomene generally 

has a census population size approximately half that of H. erato (e.g. see [15]) are compatible 

with the difference in effective population size estimated from sampled genetic variation. 

Within-species genetic diversity is positively correlated with effective population size [43,53-
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55]. Indeed, the population size parameter θ determines the average genetic diversity of the 

population, because it takes into account both effective population size and mutation rate 

(these parameters can be separated using independent estimates of the mutation rate, for 

example from fossil calibrated divergence times [54], however such information is not 

available for H. erato or H. melpomene). The estimated difference in effective population size 

predicts that average genetic variation could be lower within the less abundant species H. 

melpomene, even if its radiation was temporally congruent with that of H. erato (e.g. see 

[43]).  

Like Flanagan et al. [25], we estimated splits between H. melpomene and closely 

related clades (the H. cydno clade or the silvaniforms) to be younger than the split between H. 

erato and its close relative H. hecalesia (Figures S1 and S2). This finding was supported both 

by differences in average sequence divergence (here and also Flanagan et al. [25]) and by the 

Bayesian coalescent phylogenetic analyses (which are more robust, since they estimate and 

take into account effective population sizes [29]). However, the crucial test for codivergence 

is not whether H. erato and H. melpomene first diverged from respective outgroups at similar 

times but whether their internal population radiations were temporally congruent. 

Our Bayesian coalescent reconstructions date the bases of the sampled clades at 

approximately 350,000 years ago for both H. erato and H. melpomene (Figure 3), with 

overlapping 95% Bayesian Credibility Intervals. This is compatible with a contemporaneous 

codivergence event at the start of the sampled radiations of these species (e.g. Figure 3). Thus 

we concur with Brower’s [14] suggestion that much of the phenotypic diversity within H. 

erato and H. melpomene evolved relatively recently, but estimate the origin of the sampled 

morphs of H. erato to be considerably more recent than his estimate of 1.5-2 MY, and 

contemporaneous with that of H. melpomene, contrary to his conclusions [14]. The first 

divergence between eastern and western populations (see Figure 3; Figures S1 and S2) is 
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dated at approximately 200,000 years BP for H. erato and at approximately 40,000 years BP 

for H. melpomene (though a smaller sample of western morphs were included for this 

species). However, 95% Bayesian Credibility Intervals overlap, suggesting that 

contemporaneous codivergence of western and eastern populations, within the two species, 

cannot be rejected, contrary to previous suggestions [14].  

Overall, the population genetic and Bayesian coalescent divergence time estimates 

strongly suggests that the parallel phenotypic radiations of H. erato and H. melpomene 

occurred over an overlapping time period, contrary to previous suggestions [14,25,26]. The 

phylogenetic reconstructions and divergence time estimates are compatible with a series of 

contemporaneous codivergence events, occurring during a Müllerian mimicry relationship 

sustained over at least 350,000 years. 

 

Codivergence and coevolution 

Congruent phylogenies are often considered necessary to sustain hypotheses of 

(strictly reciprocal) coevolution [10,14]. Thus, our finding of significant topological and 

temporal congruence between the phylogenies of H. erato and H. melpomene demonstrates 

that coevolution between the two species was possible (contrary to some previous 

suggestions [14,26]). Furthermore, codivergence can be considered some of the strongest 

evidence that coevolution did occur [21,22]. In the case of H. erato and H. melpomene, the 

codivergent populations identified by the cophylogenetic reconstructions frequently represent 

distinct mimetic wing patterns (e.g. Figure 3). Thus, population codivergence is correlated 

with parallel genetic [2,56] and phenotypic [2] variation. When sustained codivergence is 

accompanied by multiple examples of parallel phenotypic change (as in the co-mimetic 

morphs of H. erato and H. melpomene illustrated in Figure 1), reciprocal coevolution can be 

considered a more probable mechanism than, for example, entirely one-sided evolutionary 
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change by one species (previously suggested to be the less abundant H. melpomene) to match 

its co-mimic (previously suggested to be the more abundant H. erato) [13].  

While theory suggests that the mutual fitness benefits of Müllerian mimicry will 

promote coevolution [2,5,10], evidence for this has previously been rare [15] (though 

biogeographic comparisons suggesting that the dominant model H. erato has sometimes 

converged towards H. melpomene [13] offer another line of evidence for reciprocal 

evolution). Therefore, our demonstration of sustained codivergence between mimetic 

populations of H. erato and H. melpomene represents a key case for the study of coevolution. 

Coevolution is a powerful concept because it describes a mechanism for the 

coordination of evolutionary change in genetically separate populations [12]. Consequently, 

evidence for coevolution has fundamental implications for ecology, population genetics and 

wider evolutionary theory [12]. We present evidence for phylogenetic codivergence between 

mimetic populations of H. erato and H. melpomene. Such codivergence represents some of 

the strongest evidence for coevolution [13,21]. Therefore, the parallel radiations of H. erato 

and H. melpomene support a hypothesis of reciprocal coevolution between Müllerian co-

mimics characterised by population codivergence and parallel phenotypic change [2]. 

Consequently, we suggest that these parallel radiations deserve to be reinstated (after [13,57]) 

as the most striking known example of coevolution. 

 

Acknowledgements 

 

Satellite image of Central and South America courtesy of NASA Earth Observatory. 

Photographs of Heliconius type specimens courtesy of Butterflies of America (specimens 

held by The Natural History Museum, London) and The Linnean Society of London. This 

research was supported by a Discovery Project grant from the Australian Research Council. 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
12

.6
82

9.
1 

: P
os

te
d 

25
 J

an
 2

01
2



23 
 

 

References 

 

1. Brown JKS (1981) The biology of Heliconius and related genera. Ann Rev Entomol 26: 

427-456. 

2. Sheppard PM, Brown KS, Benson WW, Singer MC (1985) Genetics and the evolution of 

Müllerian mimicry in Heliconius butterflies. Phil Trans Roy Soc Lond 308: 433-613. 

3. Engler H, Spencer KC, Gilbert LE (2000) Preventing cyanide release from leaves. Nature 

406: 144-145. 

4. Kapan DD (2001) Three-butterfly system provides a field test of Müllerian mimicry. 

Nature 409: 338-340. 

5. Müller F (1879) Ituna and Thyridia; a remarkable case of mimicry in butterflies. Trans 

Entomol Soc Lond 1879: xx-xxix. 

6. Bates HW (1862) Contributions to an insect fauna of the Amazon valley (Lepidoptera: 

Heliconidae). Trans Linnean Soc 23: 495-556. 

7. Reed RD, Papa R, Martin A, Hines HM, Counterman BA, et al. (2011) optix drives the 

repeated convergent evolution of butterfly wing pattern mimicry. Science 333: DOI: 

10.1126/science.1208227. 

8. Benson WW (1972) Natural selection for Müllerian mimicry in Heliconius erato in Costa 

Rica. Science 176: 936-939. 

9. Thompson JN (1994) The coevolutionary process. Chicago: University of Chicago Press. 

10. Joron M, Mallet JL (1998) Diversity in mimicry: paradox or paradigm? Trends Ecol Evol 

13: 461-466. 

11. Janzen DH (1980) When is it coevolution? Evolution. 34: 611-612. 

12. Thompson JN (1989) Concepts of coevolution. Trends Ecol Evol 4: 179-183. 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
12

.6
82

9.
1 

: P
os

te
d 

25
 J

an
 2

01
2



24 
 

13. Gilbert LE (1983) Coevolution and mimicry. In: Futuyma DM, Slatkin M, eds. 

Coevolution. Sunderland: Sinauer Associates Inc. pp. 263-281. 

14. Brower AVZ (1996) Parallel race formation and the evolution of mimicry in Heliconius 

butterflies: a phylogenetic hypothesis from mitochondrial DNA sequences. Evolution 50: 

195-221. 

15. Mallet J (1999) Causes and consequences of a lack of coevolution in Müllerian mimicry. 

Evol Ecol 13: 777-806. 

16. Beltrán M, Jiggins CD, Brower AVZ, Bermingham E, Mallet J (2007) Do pollen feeding, 

pupal-mating and larval gregariousness have a single origin in Heliconius butterflies? 

Inferences from multilocus DNA sequence data. Biol J Linn Soc 92: 221-239. 

17. Counterman BA, Araujo-Perez F, Hines HM, Baxter SW, Morrison CM, et al. (2010) 

Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in Heliconius 

erato. PLoS Genet 6 DOI: 10.1371/journal.pgen.1000796. 

18. Hines HM, Counterman BA, Papa R, de Moura PA, Cardoso MZ, et al. (2011) Wing 

patterning gene redefines the mimetic history of Heliconius butterflies. Proc Natl Acad Sci 

USA 49: 19666-19671. 

19. Kronforst MR, Young LG, Kapan DD, McNeely C, ONeill RJ, et al. (2006) Linkage of 

butterfly mate preference and wing color preference cue at the genomic location of wingless. 

Proc Natl Acad Sci USA 103: 6575-6580. 

20. Arias CF, Muñoz AG, Jiggins CD, Mavárez J, Bermingham E, et al. (2008) A hybrid 

zone provides evidence for incipient ecological speciation in Heliconius butterflies. Mol Ecol 

17: 4699-4712. 

21. Page, RDM (2003). Introduction. In: Page RDM, ed. Tangled trees: Phylogeny, 

cospeciation, and coevolution. Chicago: The University of Chicago Press. pp. 1-21. 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
12

.6
82

9.
1 

: P
os

te
d 

25
 J

an
 2

01
2



25 
 

22. Futyma DJ, Slatkin M (1983) Introduction. In: Coevolution. Sunderland : Sinauer 

Associates Inc. pp. 1-13. 

23. Mallet J, Jiggins CD, McMillan WO (1996) Mimicry meets the mitochodrian. Curr Biol 

6: 937-940. 

24. Knapp S, Mallet J (2003) Refuting refugia? Science 300: 71-72. 

25. Flanagan NS, Tobler A, Davison A, Pybus OG, Kapan DD, et al. (2004) Historical 

demography of Müllerian mimicry in the neotropical Heliconius butterflies. Proc Natl Acad 

Sci USA 101: 9704-9709. 

26. Quek S-P, Counterman BA, de Moura PA, Cardoso MZ, Marshall CR, et al. (2010) 

Dissecting comimetic radiations in Heliconius reveals divergent histories of convergent 

butterflies. Proc Natl Acad Sci USA 107: 7365–7370. 

27. Ceccarelli FS, Crozier RH (2007) Dynamics of the evolution of Batesian mimicry: 

moelcular phylogenetic analysis of ant-mimicking Myrmarachne (Aranae: Salticidae) species 

and their ant models. J Evolution Biol 20: 286-295. 

28. Maddison WP, Knowles LL (2006) Inferring phylogeny despite incomplete lineage 

sorting. Syst Biol 55: 21-30. 

29. Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. 

Mol Biol Evol 27: 570-580. 

30. Simonsen TJ, Zakharov EV, Djernaes M, Cotton AM, Vane-Wright RI, et al. (2011) 

Phylogenetics and divergence times of Papiloninae (Lepidoptera) with special reference to 

the enigmatic genera Teinopalpus and Meandrusa. Cladistics 27: 113-137. 

31. Rosenberg NA, Nordborg M (2002) Genealogical trees, coalescent theory and the 

analysis of genetic polymorphisms. Nat Rev Genet 3: 380-390. 

32. Maddison WP, Knowles LL (2006) Inferring phylogeny despite incomplete lineage 

sorting. Syst Biol 55: 21-30. 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
12

.6
82

9.
1 

: P
os

te
d 

25
 J

an
 2

01
2



26 
 

33. Eckert AJ, Carstens BC (2008) Does gene flow destroy phylogenetic signal? The 

performance of three methods for estimating species phylogenies in the presence of gene 

flow. Mol Phylogenet Evol 49: 832-842. 

34. Zhang C, Zhang D-X, Zhu T, Yang Z (2011) Evaluation of a Bayesian coalescent method 

of species delimitation. Syst Biol 60: 747-761. 

35. Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with 

applications to phylogenetic inference. Mol Biol Evol 16: 1114-1116. 

36. Beltrán M, Jiggins CD, Bull V, Linares M, Mallet J, et al. (2002) Phylogenetic 

discordance at the species boundary: comparative gene genealogies among rapidly radiating 

Heliconius butterflies. Mol Biol Evol 19: 2176-2190. 

37. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high 

throughput. Nucleic Acids Res 32: 1792-1797. 

38. Jobb G, Haeseler AV, Strimmer K (2004) TREEFINDER: a powerful graphical analysis 

environment for molecular phylogenetics. BMC Evol Biol 4: 18. 

39. Posada D (2008) jModeltest: phylogenetic model averaging. Mol Biol Evol 25: 1253-

1256. 

40. Akaike H (1974) A new look at statistical model identification. IEEE T Automat Contr 

19: 716-723. 

41. Hey J, Wakely J (1997) A coalescent estimator of the population recombination rate. 

Genetics 145: 833-846. 

42. Watterson GA (1975) On the number of segregating sitres in genetical models without 

recombination. Theor Popul Biol 7: 256-276. 

43. Wakely J, Hey J (1997) Estimating ancestral population parameters. Genetics 145: 847-

855. 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
12

.6
82

9.
1 

: P
os

te
d 

25
 J

an
 2

01
2



27 
 

44. Swofford DL (2000) PAUP* Phylogenetic analysis using parsimony (*and other 

methods) version 4. Sunderland: Sinauer Associates. 

45. Maddison WP, Maddison DR (2010) Mesquite: a modular system for evolutionary 

analysis version 2.73. http://mesquiteproject.org. 

46. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling 

trees. BMC Evol Biol 7: 214. 

47. Yang Z, Rannala B (2010) Bayesian species delimitation using multilocus sequence data. 

Proc Natl Acad Sci USA 107: 9264-9269. 

48. McCormack JE, Heled J, Delaney KS, Townsend Peterson A, Lacey Knowles L (2010) 

Calibrating divergence times on species trees versus gene trees: implications for speciation 

history of Aphelocoma jays. Evolution 65: 184-202. 

49. Charleston MA, Robertson DL (2002) Preferential host switching by primate lentiviruses 

can account for phylogenetic similarity with the primate phylogeny. Syst Biol 51: 528-535. 

50. Conow C, Fielder D, Ovadia Y, Libeskind-Hadas R (2010) Jane: a new tool for the 

cophylogeny reconstruction problem. Algorithm Mol Biol 5: 16. 

51. Charleston MA (1998) Jungles: a new solution to the host/parasite phylogeny 

reconciliation problem. Math Biosci 149: 191-223. 

52. Wright S (1931) Evolution in Mendelian populations. Genetics 16: 97-159. 

53. Frankham R (1996) Relationship of genetic variation to population size in wildlife. 

Conserv Biol 10: 1500-1508. 

54. Charlesworth B (2009) Effective population size and patterns of molecular evolution and 

variation. Nat Rev Genet 10: 195-205. 

55. Kronforst MR, Gilbert LE (2008) The population genetics of mimetic diversity in 

Heliconius butterflies. P Roy Soc B 275: 493-500. 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
12

.6
82

9.
1 

: P
os

te
d 

25
 J

an
 2

01
2



28 
 

56. Baxter SW, Nadeau NJ, Maroja LS, Wilkinson P, Counterman BA, et al. (2010) Genomic 

hotspots for adaptation: the population genetics of Müllerian mimicry in the Heliconius 

melpomene clade. PLoS Genet 6: 1-12. 

57. Futuyma DJ (1986) Evolutionary biology: Second edition. Sunderland: Sinauer 

Associates Inc. 

58. Wilson EB (1927) Probable inference, the law of succession, and statistical inference. J 

Am Stat Assoc 22: 209-212. 

59. Chamberlain NL, Hill RI, Kapan DD, Gilbert LE, Kronforst MR (2009) Polymorphic 

butterfly reveals the missing link in ecological speciation. Science 326: 847-850. 

60. Bull V, Beltrán M, Jiggins CD, McMillan WO, Bermingham E, et al. (2006) Polyphyly 

and gene flow between non-sibling Heliconius species. BMC Biol 4: 11-27. 

Figures and Figure legends 

 

 

 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
12

.6
82

9.
1 

: P
os

te
d 

25
 J

an
 2

01
2



29 
 

Figure 1. Wing patterns morphs and geographic distributions of the Müllerian co-

mimics H. erato and H. melpomene. Mimetic morphs [2,14,26] (aligned rows), from H. 

erato (right) and H. melpomene (left), included in this study (photographs show the type 

specimens). Coloured boundaries on a satellite image of Central and South America indicate 

the geographic range of each morph [2]. Numbers indicate countries where morphs were 

sampled (by [25,26]): West of the Andes, 1 Costa Rica, 2 Panama, 3 West Ecuador; East of 

the Andes, 4 Colombia, 5 French Guiana, 6 Trinidad, 7 Peru and 8 East Ecuador. 

 

 

 

Figure 2. Phylogenies of H. erato and H. melpomene illustrating branching orders of co-

mimetic country-level populations within each species. Example phylogenies 

independently estimated for H. erato (black, left) and H. melpomene (grey dashed, right) 

using the Minimise Deep Coalescence (MDC) method [28]. These correspond to 

cophylogenetic analysis “separate MDC countries 1” in Table 1. H. erato  /  H. melpomene 
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co-mimics (see Figure 1) are indicated by grey lines. This is one of several possible 

phylogeny pairs with similarly high congruence (see Table 1). Taxon labels indicate the 

sampled biogeographic region (East or West of the Andes), and country (abbreviations are: 

CR Costa Rica, Pa Panama, E Ecuador; C Colombia, FG French Guiana, T Trinidad and Pe 

Peru). 

 

 

 

Figure 3. Cophylogenetic reconstruction of the history of mimicry between country-

level populations of H. erato and H. melpomene. Example cophylogenetic history of the 

mimicry relationship between H. erato and H. melpomene based on MDC phylogenetic 

estimates (shown in Figure 2), and reconstructed using TreeMap 3.  Bars indicate 95% 

Bayesian Credibility Intervals for divergence times. Solid grey dots correspond to 

reconstructed codivergence events; white dots represent duplication events which, in this 

case, are both followed by model switch events; the only mimicry loss event is indicated at 
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the most recent common ancestor of H. e. hydara populations from Trinidad and Panama. 

Taxon labels correspond to those in Figure 2.  
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Phylogenies 

Minimum Cost  

(p [95% max]) 

Distance Correlation  

(p [95% max])  

Random 

Associations 

Random Mimic 

Tree 

Root of Target 

(melpomene) 

Root of Mimic 

(erato) 

separate MDC countries 1 0 [0.0024] 0 [0.0024] 0.003 [0.0074] 0.001 [0.0042] 

separate MDC countries 2 0 [0.0024] 0 [0.0024] 0.002 [0.0059] 0 [0.0024] 

separate MDC regions 1 0.200 [0.2254] 0.181 [0.2054] 0 [0.0024]  0 [0.0024] 

separate MDC morphs 1 0.025 [0.0354] 0.016 [0.0245] 0.004 [0.0089] 0.001 [0.0042] 

combined MDC countries 1 0.005 [0.0103] 0.004 [0.0089] 0.001 [0.0042] 0 [0.0024] 

combined MDC countries 2 0.003 [0.0074] 0 [0.0024]  0 [0.0024] 0 [0.0024] 

combined MDC countries 3 0.005 [0.0103] 0 [0.0024] 0.002 [0.0059] 0.004 [0.0089] 

combined MDC countries 4 0 [0.0024] 0 [0.0024] 0.001 [0.0042] 0.001 [0.0042] 

combined MDC regions 1 0.225 [0.2514] 0.212 [0.2379] 0.017 [0.0257] 0.015 [0.0233] 

combined MDC morphs 1 0.547 [0.5784] 0.529 [0.5605] 0.054 [0.0686] 0.086 [0.1040] 

combined *BEAST countries 0.029 [0.0401] 0.029 [0.0401] 0.088 [0.1061] 0.077 [0.0941] 

combined *BEAST morphs 0.003 [0.0074] 0.019 [0.0282] 0.007 [0.0130] 0.005 [0.0103] 

Quek et al., 2010 AFLP N / A 0 [0.0024] 0 [0.0024] 

Hines et al. 2011 ten-genes N / A 0 [0.0001] 0 [0.0001] 

Hines et al. 2011 colour pattern genes N / A 0 [0.0001] 0 [0.0001] 

 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
12

.6
82

9.
1 

: P
os

te
d 

25
 J

an
 2

01
2



33 
 

Table 1. Significance of congruence between H. erato and H. melpomene phylogenies. 

Phylogenies were estimated separately for the clades  H. erato and H. melpomene and in a 

combined analysis of the Heliconius. The significance of the Cophylogeny mapping analyses 

was estimated based on minimising total reconstruction costs with Jane 3, either by 

randomising the leaf associations (column 2) or by randomizing the H. erato phylogeny 

(column 3).  The significance of the pair-wise distance correlation was calculated, at the root 

of the H. melpomene phylogeny (column 5) and the root of the H. erato phylogeny (column 

6), using TreeMap 3.  Each p-value was estimated with 1000 Monte-Carlo replicates, and the 

95% confidence upper bound was calculated for each using Wilson’s score interval for 

binomial proportions [58]. 

 

Supporting Information 
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Figure S1. Bayesian coalescent phylogeny for the Heliconius with country level populations 

of H. erato and H. melpomene: branch labels give posterior probabilities, the axis indicates 

time (MY BP), and scale bars show 95% Bayesian Credibility Intervals for the mean node 

age.  

 

 

 

Figure S2. Bayesian coalescent phylogeny for the Heliconius with morph level populations 

of H. erato and H. melpomene, labelled as for Figure S1. 
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Figure S3. Phylogenies for H. erato (left) and H. melpomene (right) reproduced from [26] 

and corresponding to cophylogenetic analysis “Quek et al., 2010 AFLP” in Table 1. H. erato  

/  H. melpomene co-mimics sampled from the same country are indicated by grey lines. 

Taxon labels indicate the sampled biogeographic region (East or West of the Andes), and 

country (abbreviations correspond to Figure 2). Shaded circles indicate the significance of a 

pairwise correlation test conducted for the shaded node (with p values corresponding to the 

key). 
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Figure S4. Maximum likelihood phylogenies independently estimated for H. erato (left) and 

H. melpomene (right) based on the ten-gene dataset of [18], corresponding to cophylogenetic 

analysis “Hines et al. 2011 ten-genes” in Table 1. Taxon labels indicate the sampled 

biogeographic region (abbreviations are: Am Amazon, Ca Caribbean, Ch Chocoan-Parana), 

and country (abbreviations correspond to Figure 2 with additional abbreviation: B Brazil). 

Further annotation corresponds to Figure S3. 
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Figure S5. Phylogenies reconstructed as for those of Figure S4 except based on only the five 

colour pattern genes of [18] and corresponding to cophylogenetic analysis “Hines et al. 2011 

colour pattern genes” in Table 1. Further annotation corresponds to Figure S3. 
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Figure S6. History of mimicry between H. erato (black phylogeny) and H. melpomene (blue 

phylogeny), reconstructed using Jane 3, based on the phylogeny shown in Figure S1: white-

filled circles represent codivergence, solid circles represent duplications, arrows represent 

model switches, and dashed lines represent losses. 

 

Table S1. Sampling information for the study system, including accession numbers (not 

available in preprint version). 

 

Table S2. Significance of congruence between phylogenies with a model (H. melpomene) to 

mimic (H. erato) relationship reversed relative to Table 1. 
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Phylogenies 

Minimum Cost  

(p [95% max]) 

Distance Correlation  

(p [95% max])  

Random 

Associations 

Random Mimic 

Tree 

Root of Target 

(melpomene) 

Root of Mimic 

(erato) 

separate MDC countries 1 0 [0.0024] 0 [0.0024] 0.002 [0.0059] 0.001 [0.0042] 

separate MDC countries 2 0 [0.0024] 0 [0.0024] 0 [0.0024] 0 [0.0024] 

separate MDC regions 1 0.002 [0.0059] 0.007 [0.0130] 0 [0.0024]  0 [0.0024] 

separate MDC morphs 1 0.018 [0.0270] 0.017 [0.0257] 0.002 [0.0059] 0.001 [0.0042] 

combined MDC countries 1 0.007 [0.0103] 0.007 [0.0130] 0 [0.0024] 0 [0.0024] 

combined MDC countries 2 0.001 [0.0042] 0.003 [0.0074]  0 [0.0024] 0.001 [0.0042] 

combined MDC countries 3 0.004 [0.0089] 0.004 [0.0089] 0 [0.0024] 0 [0.0024] 

combined MDC countries 4 0.005 [0.0103] 0.004 [0.0089] 0 [0.0024] 0.003 [0.0074] 

combined MDC regions 1 0.123 [0.1439] 0.121 [0.1418] 0.01 [0.0170] 0.01 [0.0170] 

combined MDC morphs 1 0.665 [0.6948] 0.591 [0.6220] 0.07 [0.0864] 0.062 [0.0776] 

combined *BEAST countries 0.009[0.0157] 0.009 [0.0157] 0.096 [0.1148] 0.095 [0.1138] 

combined *BEAST morphs 0.012 [0.0195] 0.007 [0.0130] 0.01 [0.0170] 0.009 [0.0157] 

 

 

Table S3. DNA sequences used in this study: alignment in Nexus format (not available in 

preprint version).  
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