
This is a repository copy of Probabilistic Graph Programs for Randomised and
Evolutionary Algorithms.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/129963/

Version: Accepted Version

Proceedings Paper:
Atkinson, Timothy, Plump, Detlef orcid.org/0000-0002-1148-822X and Stepney, Susan
orcid.org/0000-0003-3146-5401 (2018) Probabilistic Graph Programs for Randomised and
Evolutionary Algorithms. In: Lambers, Leen and Weber, Jens, (eds.) Proceedings 11th
International Conference on Graph Transformation (ICGT 2018). Lecture Notes in
Computer Science . Springer .

https://doi.org/10.1007/978-3-319-92991-0_5

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Probabilistic Graph Programs for Randomised

and Evolutionary Algorithms

Timothy Atkinson⋆, Detlef Plump, and Susan Stepney

Department of Computer Science, University of York, UK
{tja511,detlef.plump,susan.stepney}@york.ac.uk

Abstract. We extend the graph programming language GP2 with prob-
abilistic constructs: (1) choosing rules according to user-defined probabil-
ities and (2) choosing rule matches uniformly at random. We demonstrate
these features with graph programs for randomised and evolutionary al-
gorithms. First, we implement Karger’s minimum cut algorithm, which
contracts randomly selected edges; the program finds a minimum cut
with high probability. Second, we generate random graphs according to
the G(n, p) model. Third, we apply probabilistic graph programming to
evolutionary algorithms working on graphs; we benchmark odd-parity
digital circuit problems and show that our approach significantly out-
performs the established approach of Cartesian Genetic Programming.

1 Introduction

GP2 is a rule-based graph programming language which frees programmers from
handling low-level data structures for graphs. The language comes with a concise
formal semantics and aims to support formal reasoning on programs; see, for
example, [22, 19, 11]. The semantics of GP2 is nondeterministic in two respects:
to execute a rule set {r1, . . . , rn} on a host graph G, any of the rules applicable
to G can be picked and applied; and to apply a rule r, any of the valid matches
of r’s left-hand side in the host graph can be chosen. GP2’s compiler [4] has
been designed by prioritising speed over completeness, thus it simply chooses
the first applicable rule in textual order and the first match that is found.

For some algorithms, compiled GP2 programs reach the performance of
hand-crafted C programs. For example, [1] contains a 2-colouring program whose
runtime on input graphs of bounded degree matches the runtime of Sedgewick’s
program in Graph Algorithms in C. Clearly, this implementation of GP2 is not
meant to produce different results for the same input or make random choices
with pre-defined probabilities.

However, probabilistic choice is a powerful algorithmic concept which is es-
sential to both randomised and evolutionary algorithms. Randomised algorithms
take a source of random numbers in addition to input and make random choices
during execution. There are many problems for which a randomised algorithm

⋆ Supported by a Doctoral Training Grant from the Engineering and Physical Sciences
Research Council (EPSRC) in the UK.

is simpler or faster than a conventional deterministic algorithm [18]. Evolution-
ary algorithms, on the other hand, can be seen as randomised heuristic search
methods employing the generate-and-test principle. They drive the search pro-
cess by variation and selection operators which involve random choices [6]. The
existence and practicality of these probabilistic algorithms motivates the exten-
sion of graph programming languages to the probabilistic domain. Note that
our motivation is different from existing simulation-driven extensions of graph
transformation [10, 14]: we propose high-level programming with probabilistic
constructs rather than specifying probabilistic models.

To cover algorithms on graphs that make random choices, we define Proba-
bilistic GP 2 (P-GP2) by extending GP2 with two constructs: (1) choosing rules
according to user-defined probabilities and (2) choosing rule matches uniformly
at random. We build on our preliminary GP2 extension [1], where all rule sets
are executed by selecting rules and matches uniformly at random. In contrast,
we propose here to extend GP2 conservatively and allow programmers to use
both probabilistic and conventional execution of rule sets. In addition, weighted
rules can be used to define more complex probability distributions.

We present three case studies in which we apply P-GP2 to randomised and
evolutionary algorithms. The first example is Karger’s randomised algorithm for
finding a minimum cut in a graph [12]. Our implementation of the algorithm
comes with a probabilistic analysis, which guarantees a high probability that
the cut computed by the program is minimal. The second example is sampling
from Gilbert’s G(n, p) random graph model [9]. The program generates random
graphs with n vertices such that each possible edge occurs with probability p.

To our knowledge, these graph programs are the first implementations of the
randomised algorithms using graph transformation. Our final case study is a
novel approach to evolving graphs by graph programming [2]. We use graphs to
represent individuals and graph programs as probabilistic mutation operators.
Whereas our examples of randomised algorithms allow to analyse the proba-
bilities of their results, performance guarantees for evolutionary algorithms are
difficult to derive and we therefore turn to empirical evaluation. We use the well
established approach of Cartesian Genetic Programming (CGP) as a benchmark
for a set of digital circuit synthesis problems and show that our approach out-
performs CGP significantly.

The rest of this paper is arranged as follows. Section 2 introduces the graph
programming language GP2, and Section 3 explains our probabilistic extension
to GP2. Sections 4 and 5 detail our applications of this extension to randomised
and evolutionary algorithms, respectively. Section 6 summarises this work and
proposes future topics of work.

2 Graph Programming with GP2

This section briefly introduces the graph programming language GP2; see [20]
for a detailed account of the syntax and semantics of the language, and [4] for
its implementation. A graph program consists of declarations of graph transfor-

Main := link!

link(a,b,c,d,e:list)

a
1

c
2

e
3

b d
a

1
c

2
e

3

b d

where not edge(1,3)

Fig. 1. A GP2 program computing the transitive closure of a graph.

mation rules and a main command sequence controlling the application of the
rules. The rules operate on host graphs whose nodes and edges are labelled with
integers, character strings or lists of integers and strings. Variables in rules are
of type int, char, string, atom or list, where atom is the union of int and
string. Atoms are considered as lists of length one, hence integers and strings
are also lists. For example, in Figure 1, the list variables a, c and e are used as
edge labels while b and d serve as node labels. The small numbers attached to
nodes are identifiers that specify the correspondence between the nodes in the
left and the right graph of the rule.

Besides carrying list expressions, nodes and edges can be marked. For exam-
ple, in the program of Figure 4, the end points of a randomly selected edge are
marked blue and red to redirect all edges incident to the blue node to the red
node.

The principal programming constructs in GP2 are conditional graph-trans-
formation rules labelled with expressions. The program in Figure 1 applies the
single rule link as long as possible to a host graph. In general, any subprogram
can be iterated with the postfix operator “!”. Applying link amounts to non-
deterministically selecting a subgraph of the host graph that matches link’s left
graph, and adding to it an edge from node 1 to node 3 provided there is no such
edge (with any label). The application condition where not edge(1,3) ensures
that the program terminates and extends the host graph with a minimal num-
ber of edges. Rule matching is injective and involves instantiating variables with
concrete values. Also, in general, any unevaluated expressions in the right-hand
side of the rule are evaluated before the host graph is altered (this has no effect
on the link rule because it does not contain operators).

Besides applying individual rules, a program may apply a rule set {r1, . . . , rn}
to the host graph by nondeterministically selecting a rule ri among the appli-
cable rules and applying it. Further control constructs include the sequential
composition P ;Q of programs P and Q, and the branching constructs if T
then P else Q and try T then P else Q. To execute the if-statement, test
T is executed on the host graph G and if this results in some graph, program P
is executed on G. If T fails (because a rule or set of rules cannot be matched),
program Q is executed on G. The try-statement behaves in the same way if T
fails, but if T produces a graph H, then P is executed on H rather than on G.

Given any graph G, the program in Figure 1 produces the smallest transitive
graph that results from adding unlabelled edges to G. (A graph is transitive if
for each directed path from a node v1 to another node v2, there is an edge from
v1 to v2.) In general, the execution of a program on a host graph may result in
different graphs, fail, or diverge. The semantics of a program P maps each host
graph to the set of all possible outcomes. GP2 is computationally complete in
that every computable function on graphs can be programmed [20].

3 P-GP2: A Probabilistic Extension of GP2

We present a conservative extension to GP2, called Probabilistic GP2 (P-GP2),
where a rule set may be executed probabilistically by using additional syntax.
Rules in the set will be picked according to probabilities specified by the pro-
grammer, while the match of a selected rule will be chosen uniformly at random.
When the new syntax is not used, a rule set is treated as nondeterministic and
executed as in GP2’s implementation [4]. This is preferable when executing
confluent rule sets where the discovery of all possible matches is expensive and
unnecessary.

3.1 Probabilistic Rule Sets

To formally describe probabilistic decisions in P-GP2, we consider the applica-
tion of a rule set R = {r1, . . . , rn} to some host graph G. The set of all possible
rule-match pairs from R in G is denoted by GR:

GR = {(ri, g) | ri ∈ R and G ⇒ri,g H for some graph H} (1)

We make separate decisions for choosing a rule and a match. The first decision
is to choose a rule, which is made over the subset of rules in R that have matches
in G, denoted by RG:

RG = {ri | ri ∈ R and G ⇒ri,g H for some match g and graph H} (2)

Once a rule ri ∈ RG is chosen, the second decision is to choose a match with
which to apply ri. The set of possible matches of ri is denoted by Gri :

Gri = {g | G ⇒ri,g H for some graph H} (3)

We assign a probability distribution (defined below) to GR which is used
to decide particular rule executions. This distribution, denoted by PGR , has to
satisfy:

PGR : GR → [0, 1] such that
∑

(ri,g)∈GR

PGR(ri, g) = 1 (4)

where [0, 1] denotes the real-valued (inclusive) interval between 0 and 1.

grow_loop(n:int) [3.0]

n
1

n
1

1
2

Fig. 2. A P-GP2 declaration of a rule with associated weight 3.0. The weight is indi-
cated in square brackets after the variable declaration.

P-GP2 allows the programmer to specify PGR by rule declarations in which
the rule can be associated with a real-valued positive weight. This weight is listed
in square brackets after the rule’s variable declarations, as shown in Figure 2.
This syntax is optional and if a rule’s weight is omitted, the weight is 1.0 by
default. In the following we use the notation w(r) for the positive real value
associated with any rule r in the program.

To indicate that the call of a rule set {r1, . . . , rn} should be executed prob-
abilistically, the call is written with square brackets:

[r1, . . . , rn] (5)

This includes the case of a probabilistic call of a single rule r, written [r], which
ignores any weight associated with r and simply chooses a match for r uniformly
at random. Given a probabilistic rule set call R = [r1, . . . , rn], the probability
distribution PGR is defined as follows. The summed weight of all rules with
matches in G is

∑
rx∈RG w(rx), and the weighted distribution over rules in RG

assigns to each rule ri ∈ RG the following probability:

w(ri)∑
rx∈RG

w(rx)
(6)

The uniform distribution over the matches of each rule ri ∈ RG assigns the
probability 1/ |Gri | to each match g ∈ Gri . This yields the definition of PGR for
all pairs (ri, g) ∈ GR:

PGR(ri, g) =
w(ri)∑

rx∈RG

w(rx)
×

1

|Gri |
(7)

In the implementation of P-GP2, the probability distribution PGR decides
the choice of rule and match for R = [r1, . . . , rn] (based on a random-number
generator). Note that this is correctly implemented by first choosing an applica-
ble rule ri according to the weights and then choosing a match for ri uniformly
at random. The set of all matches is computed at run-time using the existing
search-plan method described in [3]. Note that this is an implementation decision
that is not intrinsic to the design of P-GP2.

If a rule setR is called using GP2 curly-brackets syntax, execution follows the
GP2 implementation [4]. Hence our language extension is conservative; existing

probability_edge(a,b,c:list)

p 1.0 - p

a
1

c
2

b
a

1
c

2

b
a

1
c

2

Fig. 3. A PGTS rule with multiple right-hand sides. The probability of each right-hand
side is the value given above it.

GP2 programs will execute exactly as before because probabilistic behaviour
is invoked only by the new syntax. The implementation of P-GP2 is available
online1.

3.2 Related Approaches

In this section we address three other approaches to graph transformation which
incorporate probabilities. All three aim at modelling and analysing systems
rather than implementing algorithms by graph programs, which is our inten-
tion. The port graph rewriting framework PORGY [8] allows to model complex
systems by transforming port graphs according to strategies formulated in a
dedicated language. Probability distributions similar to those in this paper can
be expressed in PORGY using the ppick command which allows probabilistic
program branching, possibly through external function calls.

Stochastic Graph Transformation Systems [10] (SGTS) are an approach to
continuous-time graph transformation. Rule-match pairs are associated with con-
tinuous probability functions describing their probability of executing within a
given time window. While the continuous time model is clearly distinct to our
approach, the application rates associated with rules in SGTS describe similar
biases in probabilistic rule choice as our approach.

Closest to our approach are Probabilistic Graph Transformation Systems
(PGTS) [14]. This model assumes nondeterministic choice of rule and match
as in conventional graph transformation, but executes rules probabilistically. In
PGTS, rules have single left-hand-sides but possibly several right-hand sides
equipped with probabilities. This mixture of nondeterminism and probabilistic
execution gives rise to Markov decision processes. There are clear similarities
between our approach and PGTS: both operate in discrete steps and both can
express nondeterminism and probabilistic behaviour. However, PGTS are strict
in their allocation of behaviour; rule and match choice is nondeterministic and
rule execution is probabilistic. In our approach, a programmer may specify that
a rule set is executed in either manner. It seems possible to simulate (unnested)
PGTS in our approach by applying a nondeterministic rule set that chooses a
rule and its match followed by a probabilistic rule set which executes one of the
right-hand sides of this rule. For example, the first loop in the G(n, p) program in

1 https://github.com/UoYCS-plasma/P-GP2

Main := (three_node; [pick_pair]; delete_edge!; redirect!; cleanup)!

three_node(a,b,c:list)

a
1

b
2

c
3

a
1

b
2

c
3

delete_edge(a,b:list; n:int)

a
1

b
2

n
a

1
b

2

cleanup(a,b:list)

a
1

b
2

a
1

pick_pair(a,b:list; n:int)

a
1

b
2

n
a

1
b

2

redirect(a,b,c:list; n:int)

a
1

b
2

c
3

n

a
1

b
2

c
3

n

Fig. 4. The contraction procedure of Karger’s algorithm implemented in P-GP2

Figure 6 simulates a single PGTS rule; pick_edge nondeterministically chooses
a match, and [keep_edge, delete_edge] probabilistically executes some right-
hand side on the chosen match. Figure 3 visualises this single PGTS rule.

4 Application to Randomised Algorithms

4.1 Karger’s Minimum Cut Algorithm

Karger’s contraction algorithm [12] is a randomised algorithm that attempts to
find a minimum cut in a graph G, that is, the minimal set of edges to delete to
produce two disconnected subgraphs of G. The contraction procedure repeatedly
merges adjacent nodes at random until only two remain. As this algorithm is
designed for multi-graphs (without loops or edge direction), we model an edge
between two nodes as two directed edges, one in each direction. For visual sim-
plicity, we draw this as a single edge with an arrow head on each end. We assume
that input graphs are unmarked, contain only simulated directed edges, and are
connected. We also assume that edges are labelled with unique integers, as this
allows us to recover the cut from the returned solution.

Figure 4 shows a P-GP2 implementation of this contraction procedure. This
program repeatedly chooses an edge to contract at random using the pick_pair
rule, which marks the surviving node red and the node that will be deleted
blue. The nodes’ common edges are deleted by delete_edge and all other edges
connected to the blue node that will be deleted are redirected to connect to
the red surviving node by redirect. In the final part of the loop, cleanup
deletes the blue node and unmarks the red node. This sequence is applied as

1 2 3

4 5 6 7 8 9 10 11

12 13 14

2

13

∗

Fig. 5. Karger’s contraction algorithm applied to a simple 8-node graph to produce a
minimal 2-edge cut. The probability of producing this cut is at least 1

28
; our implemen-

tation generated this result after seven runs.

long as possible until the rule three_node is no longer applicable; this rule is an
identity rule ensuring that a contraction will not be attempted when only 2 nodes
remain. The final graph produced by this algorithm represents a cut, where the
edges between the 2 surviving nodes are labelled with integers. The edges with
corresponding integer labels in the input graph are removed to produce a cut.

Karger’s analysis of this algorithm finds a lower bound for the probability
of producing a minimum cut. Consider a minimum cut of c edges in a graph
of n nodes and e edges. The minimum degree of the graph must be at least c,
so e ≥ n.c

2 . If any of the edges of the minimum cut are contracted, that cut
will not be produced. Therefore the probability of the cut being produced is
the probability of not contracting any of its edges throughout the algorithm’s
execution. The probability of picking such an edge for contraction is:

c

e
≤

c
n.c
2

=
2

n
(8)

Thus the probability pn of never contracting any edge in c is:

pn ≥
n∏

i=3

1−
2

i
=

2

n(n− 1)
(9)

For example, applying Karger’s algorithm to the host graph G shown in
Figure 5 can produce one possible minimum cut (cutting 2 edges), which happens
with probability greater or equal to than 1

28 . By using rooted nodes (see [4]) it
is possible to design a P-GP2 program that executes this algorithm on a graph
with edges E in O(|E|2) time, with pick_pair being the limiting rule taking
linear time to find all possible matches, applied |E| − 2 times.

4.2 G(n, p) model for Random Graphs

The G(n, p) model [9] is a probability distribution over graphs of n vertices where
each possible edge between vertices occurs with probability p. Here we describe
an algorithm for sampling from this distribution for given parameters n and p.
This model is designed for simple graphs and so we model an edge between two
nodes, in a similar manner to that used in Karger’s algorithm, as two directed
edges, one in each direction.

Main := (pick_edge; [keep_edge, delete_edge])!; unmark_edge!

pick_edge(a,b,c:list)

a
1

c
2

b
a

1
c

2

b

unmark_edge(a,b,c:list)

a
1

c
2

b
a

1
c

2

b

keep_edge(a,b,c:list) [p]

a
1

c
2

b
a

1
c

2

b

delete_edge(a,b,c:list) [1.0 - p]

a
1

c
2

b a
1

c
2

Fig. 6. P-GP2 program for sampling from the G(n, p) model for some probability p.
The input is assumed to be a connected unmarked graph with n vertices.

1 2

3 4

1 2

3 4

∗

Fig. 7. The G(n, p) program applied to a complete 4-node graph with p = 0.4. The
probability of producing this result is 0.0207.

As we are concerned with a fixed number of vertices n, we assume an un-
marked input graph with n vertices and for each pair of vertices v1, v2 exactly
one edge with v1 as its source and v2 as its target – effectively a fully connected
graph with two directed edges simulating a single undirected edge. Then G(n, p)
can be sampled by parameterising the GP2 algorithm given in Figure 6 by p.
In this algorithm, every undirected edge in the host graph is chosen nondeter-
ministically by pick_edge, marking it red. Then this edge is either kept and
marked blue by keep_edge with probability p or it is deleted by delete_edge

with probability 1− p. After all edges have either been deleted or marked blue,
unmark_edge is used to remove the surviving edges’ marks. By applying this
algorithm, each possible edge is deleted with probability 1− p and hence occurs
with probability p, sampling from the G(n, p) model.

Sampling from the G(n, p) model yields a uniform distribution over graphs
of n nodes and M edges and each such graph occurs with probability:

pM (1− p)(
n

2)−M (10)

Figure 7 shows a possible result when applying this algorithm to a simple
4-node input with p = 0.4.

i2 i1

NOR OR OR

NOR OR AND AND

AND OR NOR

o2 o1

Fig. 8. An example EGGP Individual for a digital circuit problem. Outgoing edges of
nodes represent the nodes that they use as inputs; for example o2 = (i2 ↓ i1)∨ (i2∨ i1).

5 Application to Evolutionary Algorithms

Evolutionary Algorithms (EAs) are a class of meta-heuristic search and optimisa-
tion algorithms that are inspired by the principles of neo-Darwinian evolution.
In its most general sense, an EA is an iterative process were a population of
individual candidate solutions to a given problem are used to generate a new
population using mutation and crossover operators. Individuals from the existing
population are selected to reproduce according to a fitness function; a measure of
how well they solve a given problem. Mutation operators make (typically small)
changes to an individual solution, whereas crossover operators attempt to com-
bine two individual solutions to generate a new solution that maintains some of
the characteristics of both parents.

Graphs have been used extensively in EAs due to their inherent generalisa-
tion of various problems of interest; digital circuits, program syntax trees and
neural networks are commonly studied examples. For example, there are exten-
sions of Genetic Programming (a type of EA that evolves program syntax trees)
that incorporate graph-like structures, such as Parallel Distributed GP [21] and
MOIST [15]. Neural Evolution of Augmenting Topologies [23] evolves artificial
neural networks treated as graph structures. Cartesian Genetic Programming
(CGP) evolves strings of integers that encode acyclic graphs [17], and has been
applied to various problems such as circuits and neural networks [24].

In [2], probabilistic graph programming (specifically, the P-GP2 variant de-
scribed in [1]) was proposed as a mechanism for specifying mutation operators.
The approach, Evolving Graphs by Graph Programming (EGGP), was evaluated
on a set of classic digital circuit benchmark problems and found to make statis-
tically significant improvements in comparison to an existing implementation of
CGP [25]. In the rest of this section, we explain the implementation of EGGP

using probabilistic graph programming and present new benchmark results for
a set of odd parity digital circuit synthesis problems.

5.1 Evolving Graphs by Graph Programming

Individuals in EGGP represent computational networks with fixed sets of inputs
and outputs. They have a fixed set of nodes, each either representing a function,
an input or an output. Output and function nodes have input connections, which
are given by their outgoing edges. These edges are labelled with integers to
indicate the ordering of the inputs of that node; this is an necessary feature
for asymmetric functions such as division. Figure 8 shows an example EGGP
individual for digital circuit synthesis with 2 inputs, 2 outputs and function set
{AND, OR, NAND, NOR}.

Definition 1. [EGGP Individual] An EGGP Individual over function set F is a
directed graph I = {V,E, s, t, l, a, Vi, Vo} where V is a finite set of nodes and E is
a finite set of edges. s : E → V is a function associating each edge with its source.
t : E → V is a function associating each edge with its target. Vi ⊆ V is a set of
input nodes. Each node in Vi has no outgoing edges and is not associated with
a function. Vo ⊆ V is a set of output nodes. Each node in Vo has one outgoing
edge, no incoming edges and is not associated with a function. l : V → F labels
every “function node” that is not in Vi ∪ Vo with a function in F . a : E → Z

labels every edge with a positive integer.

In our implementation of EGGP in P-GP2, function associations are encoded
by labelling a node with a string representation of its function. For example, in
Figure 8, a node with function AND is labelled with the string “AND”. Input and
output nodes are encoded by labelling each of those nodes with a list of the form
a:b where b is the string “IN” or “OUT” respectively, and a is a list uniquely
identifying that output or input. The function a described in Definition 1 is
used to order inputs, an important feature for avoiding ambiguity in asymmetric
functions; as we deal with symmetric functions in this work these details are
omitted from Figure 8.

In [2], two types of atomic mutations are used. The first, function mutation,
relabels a function node with a different function, where the new function is
chosen with uniform probability. The second mutation, edge mutation, redirects
an edge so that a function node or output node uses a different input. In [2] and
here, digital circuits are of interest, therefore we require mutation operators that
preserve acyclicity.

The edge mutation used, given in Figure 9, selects an edge to mutate with
uniform probability using pick_edge. The source of this edge is marked blue and
its target is marked red. Then mark_output is applied as long as possible. This
marks all nodes, for which there is a directed path to the source of the selected
edge, blue. The remaining unmarked nodes have no such directed path to the
source of the selected edge and so can be targeted by a new edge from that source
without introducing a cycle. A new (unmarked) target is chosen with uniform

Main := try ([pick_edge]; mark_output!; [mutate_edge]; unmark!)

pick_edge(a,b,c:list)

a
1

c
2

b
a

1
c

2

b

mark_output(a,b,c:list)

a
1

c
2

b
a

1
c

2

b

unmark(a:list)

a
1

a
1

mutate_edge(a,b,c,d:list; s:string)

a
1

c
2

d:s
3

b

a
1

c
2

d:s
3

b

where s != "OUT"

Fig. 9. A P-GP2 program for mutating an individual’s edge while preserving acyclicity.

probability using mutate_edge, executing the edge mutation. The condition of
mutate_edge means that an output node cannot be targeted, thereby preserving
the requirement that output nodes have no incoming edges. Finally, unmark
unmarks all blue marked nodes, returning the now mutated EGGP individual
to an unmarked state. The entire program is surrounded by a try statement to
prevent errors in the case that an edge is chosen to mutate but there are no valid
new targets.

In our implementation2, edge and node mutations are written as P-GP2 pro-
grams which are compiled to C code and integrated with raw C code performing
the rest of the evolutionary algorithm. As a crossover operator has not yet been
developed for EGGP, the 1 + λ evolutionary algorithm is used, where in each
generation 1 individual survives and is used to generate λ new solutions. A more
detailed explanation of EGGP and its parameters is available in [2].

5.2 Odd-parity Benchmark Problems

Here we compare EGGP against the commonly used graph-based evolutionary
algorithm Cartesian Genetic Programming (CGP) for a new set of benchmark
odd-parity circuit synthesis problems. CGP is a standard approach in the liter-
ature that uses a graph-based representation of solutions, but uses linear encod-
ings that do not exploit graph transformations during mutation. The problems
studied are given in Table 1 and complement the even-parity problems examined
in [2]. We use the publicly available CGP library [25] to produce CGP results.

2 https://github.com/UoYCS-plasma/EGGP

problem inputs outputs

5-bit odd parity (5-OP) 5 1
6-bit odd parity (6-OP) 6 1
7-bit odd parity (7-OP) 7 1
8-bit odd parity (8-OP) 8 1

Table 1. Digital circuit benchmark problems.

EGGP CGP

Problem ME MAD IQR ME MAD IQR p A

5-OP 38,790 13728 29,490 96,372 41,555 91,647 10−18 0.86

6-OP 68,032 22,672 52,868 502,335 274,132 600,291 10−31 0.97

7-OP 158,852 69,477 142,267 1,722,377 934,945 2,058,077 10−33 0.99

8-OP 315,810 128,922 280,527 7,617,310 4,221,075 9,830,470 10−34 0.99

Table 2. Results from Digital Circuit benchmarks for CGP and EGGP. The p value
is from the two-tailed Mann-Whitney U test. Where p < 0.05, the effect size from the
Vargha-Delaney A test is shown; large effect sizes (A > 0.71) are shown in bold.

For both algorithms we use the following common parameters. We use the 1+λ
evolutionary algorithm with λ = 4. 100 fixed nodes are used for each individual.
Fitness is defined as the number of incorrect bits in the entire truth table of
a given individual. CGP is applied with a mutation rate of 0.04, considered to
be appropriate in [17], whereas EGGP has been observed to perform better at
lower rates and is applied with a mutation rate of 0.01.

For both algorithms, we execute 100 runs until a solution is found and mea-
sure the number of evaluations required to find a correct solution in each run.
This value approximates the effort required by an algorithm to solve a given
problem. We measure the following statistics; median evaluations (ME), median
absolute deviation (MAD), and interquartile range in evaluations (IQR). The
median absolute deviation is the median absolute difference in evaluations from
the median evaluations statistic. We test for significant differences in the median
of the two results using the non-parametric two-tailed Mann-Whitney U test [16]
and measure the effect size of significant differences using the Vargha-Delaney
A test [26].

Table 2 shows the results from running these experiments. These are con-
sistent with the results in [2], in that EGGP and its mutation operators per-
form statistically significantly better (with large effect size) for digital circuit
synthesis problems (on all of the problems studied here) than CGP under sim-
ilar conditions. These results are not intended to represent a detailed study of
the application of probabilistic graph programming to EAs. Instead they give
a flavour of promising results published elsewhere, and represent a possible ap-
proach to empirical evaluation of P-GP2 programs when formal approximations
of behaviour are intractable.

6 Conclusion and Future Work

We have presented P-GP2, a conservative extension to the graph programming
language GP2 which allows a programmer to specify probabilistic executions
of rule sets, with weighted distributions over rules and uniform distributions
over matches. This language has been used to implement Karger’s randomised
algorithm for finding a minimum cut of a graph with high probability. We have
also implemented a P-GP2 program for the G(n, p) random graph model which
generates n-node graphs in which edges between nodes exist with probability p.
Finally, we have described the application of P-GP2 to evolutionary algorithms
in our approach EGGP. The program of this case study was evaluated empirically
on common circuit benchmark problems and found to significantly outperform
a publicly available implementation of Cartesian Genetic Programming.

There are a number of possible directions for future work. We would like
to explore which algorithms from the areas of randomised graph algorithms
and random graph generation can be described in P-GP2. Obvious examples
include randomised algorithms for checking graph connectedness [18], generating
minimum spanning trees [13] and generating random graphs according to the
model of [7]. Additionally, it would be interesting to investigate the efficiency of
using incremental pattern matching [5] in the implementation as an alternative
method for identifying all matches. Turning to evolutionary algorithms, there are
various avenues to be explored, such as using graph programming to represent
crossover operators, and combining domain knowledge and graph representations
to possibly achieve even better performance.

References

1. T. Atkinson, D. Plump, and S. Stepney. Probabilistic graph programming. In
Pre-Proc. Graph Computation Models (GCM 2017), 2017.

2. T. Atkinson, D. Plump, and S. Stepney. Evolving graphs by graph programming. In
Proc. 21st European Conference on Genetic Programming (EuroGP 2018), Lecture
Notes in Computer Science. Springer, 2018. To appear.

3. C. Bak. GP 2: Efficient Implementation of a Graph Programming Language. PhD
thesis, Department of Computer Science, University of York, 2015.

4. C. Bak and D. Plump. Compiling graph programs to C. In Proc. International
Conference on Graph Transformation (ICGT 2016), volume 9761 of Lecture Notes
in Computer Science, pages 102–117. Springer, 2016.

5. G. Bergmann, Á. Horváth, I. Ráth, and D. Varró. A benchmark evaluation of
incremental pattern matching in graph transformation. In Proc. International
Conference on Graph Transformation (ICGT 2008), volume 5214 of Lecture Notes
in Computer Science, pages 396–410. Springer, 2008.

6. A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Natural
Computing Series. Springer, second edition, 2015.

7. P. Erdős and A. Rényi. On random graphs. Publicationes Mathematicae (Debre-
cen), 6:290–297, 1959.

8. M. Fernández, H. Kirchner, and B. Pinaud. Strategic port graph rewriting: An
interactive modelling and analysis framework. In Proc. 3rd Workshop on Graph

Inspection and Traversal Engineering (GRAPHITE 2014), volume 159 of Electronic
Proceedings in Theoretical Computer Science, pages 15–29, 2014.

9. E. N. Gilbert. Random graphs. The Annals of Mathematical Statistics, 30(4):1141–
1144, 1959.

10. R. Heckel, G. Lajios, and S. Menge. Stochastic graph transformation systems.
Fundamenta Informaticae, 74(1):63–84, 2006.

11. I. Hristakiev and D. Plump. Checking graph programs for confluence. In Software
Technologies: Applications and Foundations – STAF 2017 Collocated Workshops,
Revised Selected Papers, volume 10748 of Lecture Notes in Computer Science, pages
92–108. Springer, 2018.

12. D. R. Karger. Global min-cuts in RNC, and other ramifications of a simple min-cut
algorithm. In Proc. 4th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 1993), pages 21–30. Society for Industrial and Applied Mathematics, 1993.

13. D. R. Karger. Random sampling in matroids, with applications to graph connectiv-
ity and minimum spanning trees. In Proc. 34th Annual Symposium on Foundations
of Computer Science (FOCS 1993), pages 84–93, 1993.

14. C. Krause and H. Giese. Probabilistic graph transformation systems. In Proc.
International Conference on Graph Transformation (ICGT 2012), volume 7562 of
Lecture Notes in Computer Science, pages 311–325. Springer, 2012.

15. E. G. López and K. Rodŕıguez-Vázquez. Multiple interactive outputs in a single
tree: An empirical investigation. In Proc. EuroGP 2007, volume 4445 of Lecture
Notes in Computer Science, pages 341–350. Springer, 2007.

16. H. B. Mann and D. R. Whitney. On a test of whether one of two random variables
is stochastically larger than the other. Ann. Math. Statist., 18(1):50–60, 1947.

17. J. F. Miller, editor. Cartesian Genetic Programming. Springer, 2011.
18. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University

Press, 1995.
19. D. Plump. Reasoning about graph programs. In Proc. Computing with Terms and

Graphs (TERMGRAPH 2016), volume 225 of Electronic Proceedings in Theoretical
Computer Science, pages 35–44, 2016.

20. D. Plump. From imperative to rule-based graph programs. Journal of Logical and
Algebraic Methods in Programming, 88:154–173, 2017.

21. R. Poli. Parallel Distributed Genetic Programming. In D. Corne, M. Dorigo, and
F. Glover, editors, New Ideas in Optimization, pages 403–431. McGraw-Hill, 1999.

22. C. M. Poskitt and D. Plump. Verifying monadic second-order properties of graph
programs. In Proc. International Conference on Graph Transformation (ICGT
2014), volume 8571 of Lecture Notes in Computer Science, pages 33–48. Springer,
2014.

23. K. O. Stanley and R. Miikkulainen. Efficient reinforcement learning through evolv-
ing neural network topologies. In Proc. Annual Conference on Genetic and Evo-
lutionary Computation (GECCO 2002), pages 569–577. Morgan Kaufmann, 2002.

24. A. J. Turner and J. F. Miller. Cartesian Genetic Programming encoded artificial
neural networks: A comparison using three benchmarks. In Proc. GECCO 2013,
pages 1005–1012. ACM, 2013.

25. A. J. Turner and J. F. Miller. Introducing a cross platform open source Carte-
sian Genetic Programming library. Genetic Programming and Evolvable Machines,
16(1):83–91, 2015.

26. A. Vargha and H. D. Delaney. A critique and improvement of the CL common
language effect size statistics of McGraw and Wong. Journal of Educational and
Behavioral Statistics, 25(2):101–132, 2000.

