3,180 research outputs found

    Little emperors in the UK: Acculturation and food over time

    Get PDF
    This is the post-print version of the final paper published in Journal of Business Research. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2011 Elsevier B.V.This paper investigates the acculturation process of a group of Chinese students living in the UK. It emerges from a longitudinal study looking at how participants' social ties affect their food consumption. Drafting from an interpretive study using focus groups discussions, it shows that participants' food consumption patterns change over time in relation to participants' social ties. Three acculturation phases have been individuated. They show that ethnic and non-ethnic ties influence participants' acculturation process. Students with strong ethnic ties consume Chinese food for maintaining their ethnic identity and resisting host food culture. Students with weak ethnic ties consume Chinese food to maintain their ethnic identity and global consumer culture food to resist host food culture. Participants with strong non-ethnic ties have a wider knowledge of host food culture, but they do not consume it more than students with weak non-ethnic ties

    Atomic-level structural and chemical analysis of Cr-doped Bi2Se3 thin films

    Get PDF
    We present a study of the structure and chemical composition of the Cr-doped 3D topological insulator Bi2Se3. Single-crystalline thin films were grown by molecular beam epitaxy on Al2O3 (0001), and their structural and chemical properties determined on an atomic level by aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy. A regular quintuple layer stacking of the Bi2Se3 film is found, with the exception of the first several atomic layers in the initial growth. The spectroscopy data gives direct evidence that Cr is preferentially substituting for Bi in the Bi2Se3 host. We also show that Cr has a tendency to segregate at internal grain boundaries of the Bi2Se3 film

    Interactions between the Nse3 and Nse4 Components of the SMC5-6 Complex Identify Evolutionarily Conserved Interactions between MAGE and EID Families

    Get PDF
    The SMC5-6 protein complex is involved in the cellular response to DNA damage. It is composed of 6-8 polypeptides, of which Nse1, Nse3 and Nse4 form a tight sub-complex. MAGEG1, the mammalian ortholog of Nse3, is the founding member of the MAGE (melanoma-associated antigen) protein family and Nse4 is related to the EID (E1A-like inhibitor of differentiation) family of transcriptional repressors.Using site-directed mutagenesis, protein-protein interaction analyses and molecular modelling, we have identified a conserved hydrophobic surface on the C-terminal domain of Nse3 that interacts with Nse4 and identified residues in its N-terminal domain that are essential for interaction with Nse1. We show that these interactions are conserved in the human orthologs. Furthermore, interaction of MAGEG1, the mammalian ortholog of Nse3, with NSE4b, one of the mammalian orthologs of Nse4, results in transcriptional co-activation of the nuclear receptor, steroidogenic factor 1 (SF1). In an examination of the evolutionary conservation of the Nse3-Nse4 interactions, we find that several MAGE proteins can interact with at least one of the NSE4/EID proteins.We have found that, despite the evolutionary diversification of the MAGE family, the characteristic hydrophobic surface shared by all MAGE proteins from yeast to humans mediates its binding to NSE4/EID proteins. Our work provides new insights into the interactions, evolution and functions of the enigmatic MAGE proteins

    Nonparametric and semi-parametric panel data models: recent developments

    Get PDF
    ABSTRACT: In this paper, we provide an intensive review of the recent developments for semiparametric and fully nonparametric panel data models that are linearly separable in the innovation and the individual-specific term. We analyze these developments under two alternative model specifications: fixed and random effects panel data models. More precisely, in the random effects setting, we focus our attention in the analysis of some efficiency issues that have to do with the so-called working independence condition. This assumption is introduced when estimating the asymptotic variance-covariance matrix of nonparametric estimators. In the fixed effects setting, to cope with the so-called incidental parameters problem, we consider two different estimation approaches: profiling techniques and differencing methods. Furthermore, we are also interested in the endogeneity problem and how instrumental variables are used in this context. In Addition, for practitioners, we also show different ways of avoiding the so-called curse of dimensionality problem in pure nonparametric models. In this way, semiparametric and additive models appear as a solution when the number of explanatory variables is large

    Nematic pairing from orbital-selective spin fluctuations in FeSe

    Get PDF
    FeSe is an intriguing iron-based superconductor. It presents an unusual nematic state without magnetism and can be tuned to increase the critical superconducting temperature. Recently it has been observed a noteworthy anisotropy of the superconducting gaps. Its explanation is intimately related to the understanding of the nematic transition itself. Here, we show that the spin-nematic scenario driven by orbital-selective spin fluctuations provides a simple scheme to understand both phenomena. The pairing mediated by anisotropic spin modes is not only orbital selective but also nematic, leading to stronger pair scattering across the hole and X electron pocket. The delicate balance between orbital ordering and nematic pairing points also to a marked k z dependence of the hole\u2013gap anisotropy

    Activation of Type 1 Cannabinoid Receptor (CB1R) promotes neurogenesis in murine subventricular zone cell cultures

    Get PDF
    The endocannabinoid system has been implicated in the modulation of adult neurogenesis. Here, we describe the effect of type 1 cannabinoid receptor (CB1R) activation on self-renewal, proliferation and neuronal differentiation in mouse neonatal subventricular zone (SVZ) stem/progenitor cell cultures. Expression of CB1R was detected in SVZ-derived immature cells (Nestin-positive), neurons and astrocytes. Stimulation of the CB1R by (R)-(+)-Methanandamide (R-m-AEA) increased self-renewal of SVZ cells, as assessed by counting the number of secondary neurospheres and the number of Sox2+/+ cell pairs, an effect blocked by Notch pathway inhibition. Moreover, R-m-AEA treatment for 48 h, increased proliferation as assessed by BrdU incorporation assay, an effect mediated by activation of MAPK-ERK and AKT pathways. Surprisingly, stimulation of CB1R by R-m-AEA also promoted neuronal differentiation (without affecting glial differentiation), at 7 days, as shown by counting the number of NeuN-positive neurons in the cultures. Moreover, by monitoring intracellular calcium concentrations ([Ca2+](i)) in single cells following KCl and histamine stimuli, a method that allows the functional evaluation of neuronal differentiation, we observed an increase in neuronal-like cells. This proneurogenic effect was blocked when SVZ cells were co-incubated with R-m-AEA and the CB1R antagonist AM 251, for 7 days, thus indicating that this effect involves CB1R activation. In accordance with an effect on neuronal differentiation and maturation, R-m-AEA also increased neurite growth, as evaluated by quantifying and measuring the number of MAP2-positive processes. Taken together, these results demonstrate that CB1R activation induces proliferation, self-renewal and neuronal differentiation from mouse neonatal SVZ cell cultures.Fundacao para a Ciencia e a Tecnologia - Portugal [POCTI/SAU-NEU/68465/2006, PTDC/SAU-NEU/104415/2008, PTDC/SAU-NEU/101783/2008, POCTI/SAU-NEU/110838/2009]; Fundacao Calouste Gulbenkian [96542]; Fundacao para a Ciencia e Tecnologiainfo:eu-repo/semantics/publishedVersio

    Identification of the initial molecular changes in response to circulating angiogenic cells-mediated therapy in critical limb ischemia

    Get PDF
    BackgroundCritical limb ischemia (CLI) constitutes the most aggressive form of peripheral arterial occlusive disease, characterized by the blockade of arteries supplying blood to the lower extremities, significantly diminishing oxygen and nutrient supply. CLI patients usually undergo amputation of fingers, feet, or extremities, with a high risk of mortality due to associated comorbidities.Circulating angiogenic cells (CACs), also known as early endothelial progenitor cells, constitute promising candidates for cell therapy in CLI due to their assigned vascular regenerative properties. Preclinical and clinical assays with CACs have shown promising results. A better understanding of how these cells participate in vascular regeneration would significantly help to potentiate their role in revascularization.Herein, we analyzed the initial molecular mechanisms triggered by human CACs after being administered to a murine model of CLI, in order to understand how these cells promote angiogenesis within the ischemic tissues.MethodsBalb-c nude mice (n:24) were distributed in four different groups: healthy controls (C, n:4), shams (SH, n:4), and ischemic mice (after femoral ligation) that received either 50 mu l physiological serum (SC, n:8) or 5x10(5) human CACs (SE, n:8). Ischemic mice were sacrificed on days 2 and 4 (n:4/group/day), and immunohistochemistry assays and qPCR amplification of Alu-human-specific sequences were carried out for cell detection and vascular density measurements. Additionally, a label-free MS-based quantitative approach was performed to identify protein changes related.ResultsAdministration of CACs induced in the ischemic tissues an increase in the number of blood vessels as well as the diameter size compared to ischemic, non-treated mice, although the number of CACs decreased within time. The initial protein changes taking place in response to ischemia and more importantly, right after administration of CACs to CLI mice, are shown.ConclusionsOur results indicate that CACs migrate to the injured area; moreover, they trigger protein changes correlated with cell migration, cell death, angiogenesis, and arteriogenesis in the host. These changes indicate that CACs promote from the beginning an increase in the number of vessels as well as the development of an appropriate vascular network.Institute of Health Carlos III, ISCIII; Junta de Andaluci

    Projections from the paralemniscal nucleus to the spinal cord in the mouse

    Get PDF
    The present study investigated the projection from the paralemniscal nucleus (PL) to the spinal cord in the mouse by injecting the retrograde tracer fluoro-gold to different levels of the spinal cord and injecting the anterograde tracer biotinylated dextran amine into PL. We found that PL projects to the entire spinal cord with obvious contralateral predominance—420 neurons projected to the contralateral cervical cord and 270 to the contralateral lumbar cord. Fibers from PL descended in the dorsolateral funiculus on the contralateral side and terminated in laminae 5, 6, 7, and to a lesser extent in the dorsal and ventral horns. A smaller number of fibers also descended in the ventral funiculus on the ipsilateral side and terminated in laminae 7, 8 and, to a lesser extent in lamina 9. The present study is the first demonstration of the PL fiber termination in the spinal cord in mammals. The PL projection to the spinal cord may be involved in vocalization and locomotion
    corecore