47 research outputs found

    Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 fb−1 of s√ = 13 TeV pp collision data with the ATLAS detector

    Get PDF
    A search for the supersymmetric partners of quarks and gluons (squarks and gluinos) in final states containing jets and missing transverse momentum, but no electrons or muons, is presented. The data used in this search were recorded by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of s√ = 13 TeV during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. The results are interpreted in the context of various R-parity-conserving models where squarks and gluinos are produced in pairs or in association and a neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 2.30 TeV for a simplified model containing only a gluino and the lightest neutralino, assuming the latter is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.85 TeV are excluded if the lightest neutralino is massless. These limits extend substantially beyond the region of supersymmetric parameter space excluded previously by similar searches with the ATLAS detector

    Measurement of Azimuthal Anisotropy of Muons from Charm and Bottom Hadrons in pp Collisions at √s = 13 TeV with the ATLAS Detector

    Get PDF
    The elliptic flow of muons from the decay of charm and bottom hadrons is measured in p p collisions at √ s = 13     TeV using a data sample with an integrated luminosity of 150     pb − 1 recorded by the ATLAS detector at the LHC. The muons from heavy-flavor decay are separated from light-hadron decay muons using momentum imbalance between the tracking and muon spectrometers. The heavy-flavor decay muons are further separated into those from charm decay and those from bottom decay using the distance-of-closest-approach to the collision vertex. The measurement is performed for muons in the transverse momentum range 4–7 GeV and pseudorapidity range | η | < 2.4 . A significant nonzero elliptic anisotropy coefficient v 2 is observed for muons from charm decays, while the v 2 value for muons from bottom decays is consistent with zero within uncertainties

    Properties of jet fragmentation using charged particles measured with the ATLAS detector in pp collisions at root s=13 TeV

    Get PDF
    This paper presents a measurement of quantities related to the formation of jets from high-energy quarks and gluons (fragmentation). Jets with transverse momentum 100 GeV 500 MeV and |η| < 2.5 are used to probe the detailed structure of the jet. The fragmentation properties of the more forward and the more central of the two leading jets from each event are studied. The data are unfolded to correct for detector resolution and acceptance effects. Comparisons with parton shower Monte Carlo generators indicate that existing models provide a reasonable description of the data across a wide range of phase space, but there are also significant differences. Furthermore, the data are interpreted in the context of quark- and gluon-initiated jets by exploiting the rapidity dependence of the jet flavor fraction. A first measurement of the charged-particle multiplicity using model-independent jet labels (topic modeling) provides a promising alternative to traditional quark and gluon extractions using input from simulation. The simulations provide a reasonable description of the quark-like data across the jet Pt range presented in -this measurement, but the gluon-like data have systematically fewer charged particles than the simulation

    Reconstruction and identification of boosted di-Ï„ systems in a search for Higgs boson pairs using 13 TeV proton-proton collision data in ATLAS

    Get PDF
    In this paper, a new technique for reconstructing and identifying hadronically decaying τ+τ− pairs with a large Lorentz boost, referred to as the di-τ tagger, is developed and used for the first time in the ATLAS experiment at the Large Hadron Collider. A benchmark di-τ tagging selection is employed in the search for resonant Higgs boson pair production, where one Higgs boson decays into a boosted bb¯¯ pair and the other into a boosted τ+τ− pair, with two hadronically decaying τ-leptons in the final state. Using 139 fb−1 of proton-proton collision data recorded at a centre-of-mass energy of 13 TeV, the efficiency of the di-τ tagger is determined and the background with quark- or gluon-initiated jets misidentified as di-τ objects is estimated. The search for a heavy, narrow, scalar resonance produced via gluon-gluon fusion and decaying into two Higgs bosons is carried out in the mass range 1–3 TeV using the same dataset. No deviations from the Standard Model predictions are observed, and 95% confidence-level exclusion limits are set on this model

    Search for heavy diboson resonances in semileptonic final states in pp collisions at s√=13 TeV with the ATLAS detector

    Get PDF
    This paper reports on a search for heavy resonances decaying into WW, ZZ or WZ using proton–proton collision data at a centre-of-mass energy of s√=13 TeV. The data, corresponding to an integrated luminosity of 139 fb1, were recorded with the ATLAS detector from 2015 to 2018 at the Large Hadron Collider. The search is performed for final states in which one W or Z boson decays leptonically, and the other W boson or Z boson decays hadronically. The data are found to be described well by expected backgrounds. Upper bounds on the production cross sections of heavy scalar, vector or tensor resonances are derived in the mass range 300–5000 GeV within the context of Standard Model extensions with warped extra dimensions or including a heavy vector triplet. Production through gluon–gluon fusion, Drell–Yan or vector-boson fusion are considered, depending on the assumed model

    Search for diboson resonances in hadronic final states in 139 fb(-1) of pp collisions at root s=13 TeV with the ATLAS detector

    Get PDF
    Narrow resonances decaying into W W, W Z or ZZ boson pairs are searched for in 139 fb−1 of proton-proton collision data at a centre-of-mass energy of s√ = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider from 2015 to 2018. The diboson system is reconstructed using pairs of high transverse momentum, large-radius jets. These jets are built from a combination of calorimeter- and tracker-inputs compatible with the hadronic decay of a boosted W or Z boson, using jet mass and substructure properties. The search is performed for diboson resonances with masses greater than 1.3 TeV. No significant deviations from the background expectations are observed. Exclusion limits at the 95% confidence level are set on the production cross-section times branching ratio into dibosons for resonances in a range of theories beyond the Standard Model, with the highest excluded mass of a new gauge boson at 3.8 TeV in the context of mass-degenerate resonances that couple predominantly to gauge bosons

    Search for doubly and singly charged Higgs bosons decaying into vector bosons in multi-lepton final states with the ATLAS detector using proton-proton collisions at s√ = 13 TeV

    Get PDF
    A search for charged Higgs bosons decaying into W±W± or W±Z bosons is performed, involving experimental signatures with two leptons of the same charge, or three or four leptons with a variety of charge combinations, missing transverse momentum and jets. A data sample of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018 is used. The data correspond to a total integrated luminosity of 139 fb−1. The search is guided by a type-II seesaw model that extends the scalar sector of the Standard Model with a scalar triplet, leading to a phenomenology that includes doubly and singly charged Higgs bosons. Two scenarios are explored, corresponding to the pair production of doubly charged H±± bosons, or the associated production of a doubly charged H±± boson and a singly charged H± boson. No significant deviations from the Standard Model predictions are observed. H±± bosons are excluded at 95% confidence level up to 350 GeV and 230 GeV for the pair and associated production modes, respectively

    Search for displaced vertices of oppositely charged leptons from decays of long-lived particles in pp collisions at s=13 TeV with the ATLAS detector

    Get PDF
    A search for long-lived particles decaying into an oppositely charged lepton pair, μμ, ee, or eμ, is presented using 32.8fb−1 of pp collision data collected at s=13 TeV by the ATLAS detector at the LHC. Candidate leptons are required to form a vertex, within the inner tracking volume of ATLAS, displaced from the primary pp interaction region. No lepton pairs with an invariant mass greater than 12 GeV are observed, consistent with the background expectations derived from data. The detection efficiencies for generic resonances with lifetimes (cτ) of 100–1000 mm decaying into a dilepton pair with masses between 0.1–1.0 TeV are presented as a function of pT and decay radius of the resonances to allow the extraction of upper limits on the cross sections for theoretical models. The result is also interpreted in a supersymmetric model in which the lightest neutralino, produced via squark–antisquark production, decays into ℓ+ℓ′−ν (ℓ,ℓ′=e, μ) with a finite lifetime due to the presence of R-parity violating couplings. Cross-section limits are presented for specific squark and neutralino masses. For a 700 GeV squark, neutralinos with masses of 50–500 GeV and mean proper lifetimes corresponding to cτ values between 1 mm to 6 m are excluded. For a 1.6 TeV squark, cτ values between 3 mm to 1 m are excluded for 1.3 TeV neutralinos
    corecore