189 research outputs found

    Ruin formulas for a delay renewal risk model with general dependence

    Get PDF
    Abstract: In this paper, we derive the explicit expressions and an upper bound of the ruin probability for the compound delayed renewal risk model taking into account the dependence within the inter-claim times, the claim sizes and between the claims and their inter-claim times. We use a specific mixture of exponential distributions to define the dependence structure between the inter-occurrence times and the claim sizes

    A cost-effective method to quantify biological surface sediment reworking

    Get PDF
    We propose a simple and inexpensive method to determine the rate and pattern of surface sediment reworking by benthic organisms. Unlike many existing methods commonly used in bioturbation studies, which usually require sediment sampling, our approach is fully non-destructive and is well suited for investigating non-cohesive fine sediments in streams and rivers. Optical tracer (e.g., luminophores or coloured sand) disappearance or appearance is assessed through time based on optical quantification of surfaces occupied by tracers. Data are used to calculate surface sediment reworking (SSR) coefficients depicting bioturbation intensities. Using this method, we evaluated reworking activity of stream organisms (three benthic invertebrates and a fish) in laboratory microcosms mimicking pool habitats or directly in the field within arenas set in depositional zones. Our method was sensitive enough to measure SSR as low as 0.2 cm2.d-1, such as triggered by intermediate density (774 m-2) of Gammarus fossarum (Amphipoda) in microcosms. In contrast, complex invertebrate community in the field and a fish (Barbatula barabatula) in laboratory microcosms were found to yield to excessively high SSR (>60 cm2.d-1). Lastly, we suggest that images acquired during experiments can be used for qualitative evaluation of species-specific effects on sediment distribution

    A Large Iron Isotope Effect in SmFeAsO1-xFx and Ba1-xKxFe2As2

    Full text link
    The recent discovery of superconductivity in oxypnictides with the critical temperature (TC) higher than McMillan limit of 39 K (the theoretical maximum predicted by Bardeen-Cooper-Schrieffer (BCS) theory) has generated great excitement. Theoretical calculations indicate that the electron-phonon interaction is not strong enough to give rise to such high transition temperatures, while strong ferromagnetic/antiferromagnetic fluctuations have been proposed to be responsible. However, superconductivity and magnetism in pnictide superconductors show a strong sensitivity to the lattice, suggesting a possibility of unconventional electron-phonon coupling. Here we report the effect of oxygen and iron isotopic mass on Tc and the spin-density wave (SDW) transition temperature (TSDW) in SmFeAsO1-xFx and Ba1-xKxFe2As2 systems. The results show that oxygen isotope effect on TC and TSDW is very little, while the iron isotope exponent alpha=-dlnTc/dlnM is about 0.35, being comparable to 0.5 for the full isotope effect. Surprisingly, the iron isotope exchange shows the same effect on TSDW as TCc These results indicate that electron-phonon interaction plays some role in the superconducting mechanism, but simple electron-phonon coupling mechanism seems to be rather unlikely because a strong magnon-phonon coupling is included. Sorting out the interplay between the lattice and magnetic degrees of freedom is a key challenge for understanding the mechanism of high-TC superconductivity.Comment: 22 pages, 7 figur

    Quantitative proteomics analysis reveals important roles of N-glycosylation on ER quality control system for development and pathogenesis in Magnaporthe oryzae

    Get PDF
    The fungal pathogen Magnaporthe oryzae can cause rice blast and wheat blast diseases, which threatens worldwide food production. During infection, M. oryzae follows a sequence of distinct developmental stages adapted to survival and invasion of the host environment. M. oryzae attaches onto the host by the conidium, and then develops an appressorium to breach the host cuticle. After penetrating, it forms invasive hyphae to quickly spread in the host cells. Numerous genetic studies have focused on the mechanisms underlying each step in the infection process, but systemic approaches are needed for a broader, integrated understanding of regulatory events during M. oryzae pathogenesis. Many infection-related signaling events are regulated through post-translational protein modifications within the pathogen. N-linked glycosylation, in which a glycan moiety is added to the amide group of an asparagine residue, is an abundant modification known to be essential for M. oryzae infection. In this study, we employed a quantitative proteomics analysis to unravel the overall regulatory mechanisms of N-glycosylation at different developmental stages of M. oryzae. We detected changes in N-glycosylation levels at 559 glycosylated residues (N-glycosites) in 355 proteins during different stages, and determined that the ER quality control system is elaborately regulated by N-glycosylation. The insights gained will help us to better understand the regulatory mechanisms of infection in pathogenic fungi. These findings may be also important for developing novel strategies for fungal disease control. Genetic studies have shown essential functions of N-glycosylation during infection of the plant pathogenic fungi, however, systematic roles of N-glycosylation in fungi is still largely unknown. Biological analysis demonstrated N-glycosylated proteins were widely present at different development stages of Magnaporthe oryzae and especially increased in the appressorium and invasive hyphae. A large-scale quantitative proteomics analysis was then performed to explore the roles of N-glycosylation in M. oryzae. A total of 559 N-glycosites from 355 proteins were identified and quantified at different developmental stages. Functional classification to the N-glycosylated proteins revealed N-glycosylation can coordinate different cellular processes for mycelial growth, conidium formation, and appressorium formation. N-glycosylation can also modify key components in N-glycosylation, O-glycosylation and GPI anchor pathways, indicating intimate crosstalk between these pathways. Interestingly, we found nearly all key components of the endoplasmic reticulum quality control (ERQC) system were highly N-glycosylated in conidium and appressorium. Phenotypic analyses to the gene deletion mutants revealed four ERQC components, Gls1, Gls2, GTB1 and Cnx1, are important for mycelial growth, conidiation, and invasive hyphal growth in host cells. Subsequently, we identified the Gls1 N-glycosite N497 was important for invasive hyphal growth and partially required for conidiation, but didn't affect colony growth. Mutation of N497 resulted in reduction of Gls1 in protein level, and localization from ER into the vacuole, suggesting N497 is important for protein stability of Gls1. Our study showed a snapshot of the N-glycosylation landscape in plant pathogenic fungi, indicating functions of this modification in cellular processes, developments and pathogenesis

    Discovery of an Auto-Regulation Mechanism for the Maltose ABC Transporter MalFGK2

    Get PDF
    The maltose transporter MalFGK2, together with the substrate-binding protein MalE, is one of the best-characterized ABC transporters. In the conventional model, MalE captures maltose in the periplasm and delivers the sugar to the transporter. Here, using nanodiscs and proteoliposomes, we instead find that MalE is bound with high-affinity to MalFGK2 to facilitate the acquisition of the sugar. When the maltose concentration exceeds the transport capacity, MalE captures maltose and dissociates from the transporter. This mechanism explains why the transport rate is high when MalE has low affinity for maltose, and low when MalE has high affinity for maltose. Transporter-bound MalE facilitates the acquisition of the sugar at low concentrations, but also captures and dissociates from the transporter past a threshold maltose concentration. In vivo, this maltose-forced dissociation limits the rate of transport. Given the conservation of the substrate-binding proteins, this mode of allosteric regulation may be universal to ABC importers

    Structural Insights into the Inhibition of Cytosolic 5′-Nucleotidase II (cN-II) by Ribonucleoside 5′-Monophosphate Analogues

    Get PDF
    Cytosolic 5′-nucleotidase II (cN-II) regulates the intracellular nucleotide pools within the cell by catalyzing the dephosphorylation of 6-hydroxypurine nucleoside 5′-monophosphates. Beside this physiological function, high level of cN-II expression is correlated with abnormal patient outcome when treated with cytotoxic nucleoside analogues. To identify its specific role in the resistance phenomenon observed during cancer therapy, we screened a particular class of chemical compounds, namely ribonucleoside phosphonates to predict them as potential cN-II inhibitors. These compounds incorporate a chemically and enzymatically stable phosphorus-carbon linkage instead of a regular phosphoester bond. Amongst them, six compounds were predicted as better ligands than the natural substrate of cN-II, inosine 5′-monophosphate (IMP). The study of purine and pyrimidine containing analogues and the introduction of chemical modifications within the phosphonate chain has allowed us to define general rules governing the theoretical affinity of such ligands. The binding strength of these compounds was scrutinized in silico and explained by an impressive number of van der Waals contacts, highlighting the decisive role of three cN-II residues that are Phe 157, His 209 and Tyr 210. Docking predictions were confirmed by experimental measurements of the nucleotidase activity in the presence of the three best available phosphonate analogues. These compounds were shown to induce a total inhibition of the cN-II activity at 2 mM. Altogether, this study emphasizes the importance of the non-hydrolysable phosphonate bond in the design of new competitive cN-II inhibitors and the crucial hydrophobic stacking promoted by three protein residues

    Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Domestication and breeding involve the selection of particular phenotypes, limiting the genomic diversity of the population and creating a bottleneck. These effects can be precisely estimated when the location of domestication is established. Few analyses have focused on understanding the genetic consequences of domestication and breeding in fruit trees. In this study, we aimed to analyse genetic structure and changes in the diversity in sweet cherry <it>Prunus avium </it>L.</p> <p>Results</p> <p>Three subgroups were detected in sweet cherry, with one group of landraces genetically very close to the analysed wild cherry population. A limited number of SSR markers displayed deviations from the frequencies expected under neutrality. After the removal of these markers from the analysis, a very limited bottleneck was detected between wild cherries and sweet cherry landraces, with a much more pronounced bottleneck between sweet cherry landraces and modern sweet cherry varieties. The loss of diversity between wild cherries and sweet cherry landraces at the <it>S</it>-locus was more significant than that for microsatellites. Particularly high levels of differentiation were observed for some <it>S</it>-alleles.</p> <p>Conclusions</p> <p>Several domestication events may have happened in sweet cherry or/and intense gene flow from local wild cherry was probably maintained along the evolutionary history of the species. A marked bottleneck due to breeding was detected, with all markers, in the modern sweet cherry gene pool. The microsatellites did not detect the bottleneck due to domestication in the analysed sample. The vegetative propagation specific to some fruit trees may account for the differences in diversity observed at the <it>S</it>-locus. Our study provides insights into domestication events of cherry, however, requires confirmation on a larger sampling scheme for both sweet cherry landraces and wild cherry.</p

    Human oocyte-derived methylation differences persist in the placenta revealing widespread transient imprinting

    Get PDF
    Thousands of regions in gametes have opposing methylation profiles that are largely resolved during the post-fertilization epigenetic reprogramming. However some specific sequences associated with imprinted loci survive this demethylation process. Here we present the data describing the fate of germline-derived methylation in humans. With the exception of a few known paternally methylated germline differentially methylated regions (DMRs) associated with known imprinted domains, we demonstrate that sperm-derived methylation is reprogrammed by the blastocyst stage of development. In contrast a large number of oocyte-derived methylation differences survive to the blastocyst stage and uniquely persist as transiently methylated DMRs only in the placenta. Furthermore, we demonstrate that this phenomenon is exclusive to primates, since no placenta-specific maternal methylation was observed in mouse. Utilizing single cell RNA-seq datasets from human preimplantation embryos we show that following embryonic genome activation the maternally methylated transient DMRs can orchestrate imprinted expression. However despite showing widespread imprinted expression of genes in placenta, allele-specific transcriptional profiling revealed that not all placenta-specific DMRs coordinate imprinted expression and that this maternal methylation may be absent in a minority of samples, suggestive of polymorphic imprinted methylation

    Maternal Dietary Supplementation with Oligofructose-Enriched Inulin in Gestating/Lactating Rats Preserves Maternal Bone and Improves Bone Microarchitecture in Their Offspring

    Get PDF
    This study received financial support from Abbott Nutrition, a commercial company, and coauthors PBV, MM, JMLP and RR are employees of Abbott Nutrition. There are two patents related with the data presented (EP 2502507 A1 and EP 2745706 A1).Some of these results were presented in the 7th World Congress of DOHaD (2011) and in the World Congress on Osteoporosis, Osteoarthritis and Musculoskeletal Disease (WCO-IOF-ESCEO) (2014).Nutrition during pregnancy and lactation could exert a key role not only on maternal bone, but also could influence the skeletal development of the offspring. This study was performed in rats to assess the relationship between maternal dietary intake of prebiotic oligofructose-enriched inulin and its role in bone turnover during gestation and lactation, as well as its effect on offspring peak bone mass/architecture during early adulthood. Rat dams were fed either with standard rodent diet (CC group), calcium-fortified diet (Ca group), or prebiotic oligofructose-enriched inulin supplemented diet (Pre group), during the second half of gestation and lactation. Bone mineral density (BMD) and content (BMC), as well as micro-structure of dams and offspring at different stages were analysed. Dams in the Pre group had significantly higher trabecular thickness (Tb.Th), trabecular bone volume fraction (BV/TV) and smaller specific bone surface (BS/BV) of the tibia in comparison with CC dams. The Pre group offspring during early adulthood had an increase of the lumbar vertebra BMD when compared with offspring of CC and Ca groups. The Pre group offspring also showed significant increase versus CC in cancellous and cortical structural parameters of the lumbar vertebra 4 such as Tb.Th, cortical BMD and decreased BS/BV. The results indicate that oligofructose-enriched inulin supplementation can be considered as a plausible nutritional option for protecting against maternal bone loss during gestation and lactation preventing bone fragility and for optimizing peak bone mass and architecture of the offspring in order to increase bone strength.This study was funded by Abbott Nutrition R&D, and co-authors PBV, MM, JMLP and RR receive salary from Abbott Nutrition

    Maladaptive Habitat Selection of a Migratory Passerine Bird in a Human-Modified Landscape

    Get PDF
    In human-altered environments, organisms may preferentially settle in poor-quality habitats where fitness returns are lower relative to available higher-quality habitats. Such ecological trapping is due to a mismatch between the cues used during habitat selection and the habitat quality. Maladaptive settlement decisions may occur when organisms are time-constrained and have to rapidly evaluate habitat quality based on incomplete knowledge of the resources and conditions that will be available later in the season. During a three-year study, we examined settlement decision-making in the long-distance migratory, open-habitat bird, the Red-backed shrike (Lanius collurio), as a response to recent land-use changes. In Northwest Europe, the shrikes typically breed in open areas under a management regime of extensive farming. In recent decades, Spruce forests have been increasingly managed with large-size cutblocks in even-aged plantations, thereby producing early-successional vegetation areas that are also colonised by the species. Farmland and open areas in forests create mosaics of two different types of habitats that are now occupied by the shrikes. We examined redundant measures of habitat preference (order of settlement after migration and distribution of dominant individuals) and several reproductive performance parameters in both habitat types to investigate whether habitat preference is in line with habitat quality. Territorial males exhibited a clear preference for the recently created open areas in forests with higher-quality males settling in this habitat type earlier. Reproductive performance was, however, higher in farmland, with higher nest success, offspring quantity, and quality compared to open areas in forests. The results showed strong among-year consistency and we can therefore exclude a transient situation. This study demonstrates a case of maladaptive habitat selection in a farmland bird expanding its breeding range to human-created open habitats in plantations. We discuss the reasons that could explain this decision-making and the possible consequences for the population dynamics and persistence
    corecore