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Abstract

In this paper, we derive the explicit expressions and an upper bound of the ruin probability for the compound delayed renewal risk
model taking into account the dependence within the inter-claim times, the claim sizes and between the claims and their inter-claim
times. We use a specific mixture of exponential distributions to define the dependence structure between the inter-occurrence times

and the claim sizes.
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1 Introduction

The last two decades research on ruin probabilities and related quantities has seen an intensification (see
Albrecher and Dominik [3], Cai and Dickson [5], Delbaen and Haezendonck [9], Taylor [23], Waters [24],
Sundt and Teugels [22], Gerber [1 1]). Related to our purpose, Ramsay [6] considered the ordinary risk
model and assumed that the claim sizes have Pareto distribution with integer parameter. He then derived
the Laplace transform of the integral equation of the ruin probability and solved this equation using an ex-
ponential integral combined with an inverse Laplace transform. He showed further in his paper that the
solution can be expressed as the expected value of a function of a two parameter gamma random variable.
Wei and Yang [18] extended the result of Ramsay [6] by considering the case where the inter-arrival times
have Erlang (2) or Erlang (n) distributions and the claim amounts have a Pareto distribution. As in Ramsay
[6] they showed that the ultimate ruin probability can be expressed as the expected value of a function of
a two parameter gamma random variable. Albrecher and Teugels [2] considered an insurance portfolio sit-
uation in which there is possible dependence between the waiting time for a claim and its actual size. By
employing the underlying random walk structure they obtained explicit exponential estimates for infinite-
and finite-time ruin probabilities in the case of light-tailed claim sizes. Willmot [12] introduced the delayed
renewal risk process, which is the process where the number of claim process is assumed to have a modified
renewal process. In this model the time until the first claim occurs is assumed to have a distribution differ-
ent to the forthcoming inter-arrival times distributions. Cossette et al. [7] analyzed dependent risk models
using copulas. In their study, the dependence structure is specified by an Archimedean copula. Using this
approach with specific marginals, they derived the explicit expressions for the probability density function
of the aggregate risk and other related quantities and used those results to investigate risk models in regard
to the aggregation, capital allocation and ruin problems. Fouad et al. [10] incorporated the dependence


https://core.ac.uk/display/388624272?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

structure among the inter-arrival times, the claim sizes, and also assumed a dependence structure between
the inter-claim times and the claim sizes and derived a closed expression for the high moments in the case
of a mixing exponential model. They also gave some numerical illustrations to analyze the impact of the
dependency on the moments of the discounted aggregate claim amounts. Sendova and Zitikis [20] suggested
a general method for analyzing aggregate insurance claims that arrive according to a very general point pro-
cess, they also allowed for the process to govern claim sizes via a general dependence structure that relates
claim sizes to claim or inter-claim times and obtained general results with special closed-form formulas.
Aggregate claim process and its related functionals has been the subject of several studies, especially within
the renewal context. The reader is referred to Jang [13], Léveillé and Adékambi [14], Léveillé et al.
[17], Léveillé and Garrido [16, 15], Willmot [25]. In particular, Sarabia et al. [19] derived analytic expres-
sions for the probability density function (pdf) and the cumulative distribution function (cdf) of aggregated
risks, modelled according to a mixture of exponential distributions.

Using mixing ideas, Albrecher et al. [1] established the explicit formulas for the ruin probabilities and gave
some examples for the compound Poisson risk model with completely monotone marginal claim sizes dis-
tributions that are dependent, modelled this dependence structure via an Archimedean survival copula and
also studied the case where the dependence is among the inter-occurrence times.

In this paper we consider a general mixed risk model which is an extension of the risk model described
in Albrecher et al. [1]. Our objective is to derive the ruin formulas and to achieve this, we use derivative
and Laplace transform techniques. As we assume that the claim amounts follow an exponential distribution
with a continuous non negative random parameter © and the inter-claim times also follow an exponential
distribution with a continuous non negative random parameter A, we first condition on (A & ©) and take
the first derivative of the integral equation for the ruin probability in the case of ordinary renewal model and
for the delayed renewal model we use the assumption that after the first occurrence of the claim the pro-
cess becomes an ordinary process. Then, we use the Laplace transform technique to solve these differential
equations. Finally by assuming a specific distribution of A and © and using a specific copula to model the
dependence structure, we derive the ruin probability.

To the best of our knowledge, there is no study in the literature which used a mixed exponential distribution
for the claim amounts and the inter- arrival time in the ordinary and the delayed renewal risk model and as-
sumed that there exists dependence structure between the parameter of those distributions. This dependence
is relevant to account for the heterogeneity within the portfolio, moreover, since the distributions of the
claim amounts and the counting process are generally unknown in advance, it is reasonable to assume that
conditional on some factors (A & ©), the claim amounts and the inter-occurrence times follow a specific
distribution and are independent as these factors (A & ©) can be used to describe the segmentation for a
given line of business.

This paper is structured as follows: In Section (2), we describe the dependence structure of our risk model.
The explicit expressions for the ruin formulas are derived in the case of an Archimedean copula in Section
(3). Section (4) deals with the delayed risk model and provides some numerical examples to illustrate the
impact of the delayed time on the ruin probability. Section (5) concludes the paper.

2 The model

In this section, we introduce the ordinary and the delayed renewal process with dependence.
The surplus process is represented by U(t), ¢ > 0 with U(0) = v and

U(t):U+Ct*St, or U(t):U+Ct*S§Z, tzo (1)
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where S; = ZXZ-, Sd = Z X;, S¢ = 0if N(t) = 0 and S¢ = 0 if Ng(t) = 0. The claims counting

i=1 i=1

processes N(t),¢ > 0 and Ny(t),t > 0 form, respectively, an ordinary and a delayed renewal process and,
fork € N=1,2,3,--- wedefine T}, to be the corresponding claim occurrence times and W; = T; —T;_1,
j =1,2,--- to be the subsequent inter-claim times. The claim severities {Xk }2021 are assumed to form an

independent identically distributed (i.i.d.) sequence and their higher moments exist over a subset U C R
including a neighborhood of the origin.
In the usual ordinary renewal risk process, the sequences {Wj };‘;1 are assumed to be mutually independent.
However, in this paper, we assume that W, Wy, - - - are dependent and their dependence structure modelled
via Archimedean copulas.
Let A be a random variable with pdf fa (), assume that its Laplace transform given by

o0

fr(s) = / e~* fa(\)d\ exists over a subset & C R including a neighborhood of the origin.

For a gené)ral set up, the results obtained above by using an exponential distribution for the conditional
distribution of the time between successive claims, can be extended to other conditionally independent
distributions. For example, the conditional distribution of the inter-claims time can be written in the power
form:
Pr[Wi > :):Z| A = )\] = [ﬁ(wz)])‘ for some distribution function H(z;) and
n
Pr[Wi > 21, Wy > 2, , Wy, > 2| A = A = [ [Hz)]". @)
i=1
For all n, i.e. A is the common mixing parameter, then

th‘..,wn(w1,~- ,wn)—/ PI‘[Wl > L1y ,Wn > l’n‘l\ = )\]f)\()\>d/\,
0

_ /OOO () (He) - () fa (WA,

= fK( —log H(z1) — - — logﬁ(xl)),
= SAURT (Fwa) +- + 17 (Fw,)). 3)
The form of the dependence structure is again Archimedean with generator ((¢) = f}{_l(t), where

ij (:UJ) = fX( — logﬁ(:nj)).

Remark: Specific mixture of exponential distributions
2.1 Ordinary renewal case

Let the random variables (r.v) W1, Wy, --- . W,, be an n dependent, positive and continuous r.v. Assume
that, given A = \, the r.v’s W1, Wy, - - - | W, are conditionally independent and distributed as Exp(\) then,

Pr[Wl > x1, , Wy, > xn‘A:)\] :Pr[le a:llA:)\]--~Pr[Wn2xn|A:)\],

— ef)\xl . ef)\zn. 4)

It follows that

FWZ- ($l) — PI‘(Wi > xl) — /OOO e—)xl’fA()\)d)\ = f];(l‘) = /OOO PI‘(WZ‘ > x; |A = )\)fA()\)d)\ (5)
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The joint tail distribution of W1, Wy, --- | W,, can be written as

Fwy.oow, (@1, ) = / Pr(W1 >xp, Wy >ap | A = )\)fA()\)d)\,
0

- / e EE T fy (N)d),
0

ZfX<Zn:xi>,

=1
= fa(F Py (@) + -+ £ (P (). (6)

Otherwise from Sklar’s theorem, see e.g. Sklar [21],

Pr(W1 >z, Wy > :vn) = é’(FWl(xl), . ,FWn(xn)). @)
It follows that C'(uy, - - - ,uy) is an Archimedean copula with
Cluryun) = fR(A () 4o+ fi7 (wn)) = 071 (0(ua) + - + O(un)), ®)

where 071 (¢) = f;(t) is the generator of the Archimedean copula C.

2.2 The delayed renewal dependence case
Let (A1, A2) be a positive random vector with cumulative distribution F, A,. Assume that its Laplace

oo oo
transform given by f3 ,(s,t) = e MEA2AR L 4 (A, A2) exists over a subset K x K C R?
0. Jo
including a neighborhood of the origin. Assume further that Wy, Wy, --- | W, are n dependent random
variables, conditionally independent given (A1, Ay) and distributed as an exponential distribution, Wy |A; =
A1 and W;|Ag = Ag ~ exp(A2), ¢ = 2, -+, n, such that the joint conditional survival function is given by:

Pr(Wy > @1, , Wy > an|A1 = A, Ay = o) = Pr(W1 > 21|Ay = A1) - Pr(Wy, > a,|A = X2),
_ e*>\1$1e*>\212 . 67)\2:1;'”. 9)

The marginal distribution of W is given by

ﬁwl(.%j) :PI‘(W1 Z .%'1) :/OOO PI‘(Wl Z 1'1’/\1 = Al)fAl(Al)d)\l :fj{l(a:)

It follows that the joint survival function of (W1, --- , W,,) can be written as
o o0 o
Fle"':Wn(ml?”' 7xn):/ / Pr(W]. Z xla”' ’Wn Z xn|A1 :>\17A2:)\Q)dFAl,AQ()\17A2)7
0o Jo

00 oo \ S
- / / e e 2ima xldFALAQ ()‘17 )‘2)7
0 0
n

*
= fALA2 <$1> E xi)a

=2
10)



and the survival function of the marginal distribution of W; for? = 2,--- | n is given by:
Fw, (2:) = f},(@:).

Note that all the marginal distributions are not identically distributed. The first inter-arrival time has distribu-
tion Fyy, (1) = fX, (21), while all subsequent inter-arrival times have a cdf of the form Fyy, (z;) = f, (),

fori = 2,--- ,n. For special case when Fyy, (z1) = Fyy, (z;), fori = 2,- -+ , n, we get the ordinary renewal
process.
From (10), we get

FWL'" Wh (:El? T 7'75”) = f/tl,Ag (f;\(l_l(FW1 (33'1))7 fX;I(FW2 (1'2)), T A2 (FWn (wn)))

By applying Sklar’s theorem, see e.g. Sklar [21], the survival distribution function of W1, Wo,--- /W, is
given by

Pr(Wl Z L1y 7Wn Z $n) - CN\’(FVV1 (.’El), e 7FWn(In))
Therefore, we have a factor copula of the form
Clur, -+ un) = SR, 2, (P (wn), f37 () + o f37 () = O (U (), O(uz) + -+ O(un)), (1)
where ()(t) = fj;;l(t) L Ui(t) = f/’{l_l(t) is the generator of the Archimedean copula C.

Let (©,A;1, A2) be a positive random vector with cumulative distribution Fg A, A,. Assume that its

Laplace transform given by f§ A, A, (2. ¥, / / / e 0 MYz qRg (A (0, M1, N) ex-

ists over a subset K x K x K C R3 1nc1ud1ng a neighborhood of the origin. Assume further
that Xy,---, X, W1, Wy, .- /W, are dependent random variables, conditionally independent given
(©,A1, Az) and distributed as an exponential distribution, X;|© ~ exp(f), i = 1,---,n, Wi|A; =
A1~ exp(A1) and WAy = Ay ~ exp(A2), j = 2,-- -, n, such that the joint conditional survival function
is given by:

Pr(Xl > Ty, aXn > xn,Wl > tl,' o aWn > tn|® = 0,A1 = )\13A2 = )\2) = ei/\lwleiez?yzlz e Z; 275,
(12)

It follows that the joint survival function of (X1, -+, X, W1, -+, W,,) can be written as

oo [ee] oo
F iz =0 @~ A Yyt
FXlr",Xn,Wlf'an(xla'" I APRE 7tn) :/ / / e e 21_1»516 22 JdF@,Al,AQ(AI’)\z))

_f@Al A2<Z,’El,t1,zt>

j=2
13)
From (13), we get
FXL"’ X, Wi, W (1'17 SR S P ’tn) = fé,Al,Ag <f(f)1(FX1 (1:1))’ to @ (FXn (:En))
I By (00) fry (B (82)), -+ Z;l(Fwn(tn))>
By applying Sklar’s theorem, see e.g. Sklar [21], the survival distribution function of

Xl?"' ,Xn,Wl,WQ,"' ,WniS
Pr(X; > @1, , Xn > 20, Wi > t1,+, Wy, > t,) = C(Fx,(z1), -+, Fx, (@n), Fw, (t1), -, Fw, (tn)).



Therefore, we have a factor copula of the form

C(ur, -+ Un,v1, ) = fé,Al,A2<Zf(f)1(Ui)7f;:11(”1)»Zf;{21(vj))7
i=1 j=1

= ‘If_l(‘l’l(ul) 44 Uy (up), 01 (v1), O2(v2) - - - + D2(vy)),

(14)

where 01 (t) = Xl_l(t) , 0a(t) = /’{;l(t) Wy (t) = f& '(t) is the generator of the Archimedean copula
C. Hence the dependence structure among Wy, W; for j = 2,--- ,n and X is generated by a copula Cq23
given by

Cios(x,t,8) = f& a0, (f& (@), f271 (1), 1 (5)). (15)

Remark 1. Letting x; — 0 in (13) for all i yields (10). If Ay — Ao, then the equation (13) is con-
sistent with the result of Fouad et al. [10]. Taking t1 = 0 in (13) yields the joint survival function
of (X1,--+,Xn,Wa,--- ,Wy,). Taking t; = 0 for j = 2,---,n in (13) gives the joint distribution of
(X, , X, W1).

3 Ruin probability in the ordinary case

The conditional infinite ruin probability is defined as
Yae(N0,u) = Pr[ggU(t) <0|U0) =u, A =X 06 = 9], u >0, (16)
and the infinite ruin probability is defined as
P(u) = Pr[ggU(t) <0]U(0) = u] u > 0. (17)

Consider the model defined by equation (1), Albrecher et al. [1] have proved that Conditional on A and ©
the infinite ruin probability is given by

PYae(A,0,u) = min{e)\cexp ( - (9 — %)u), 1},

where c represents the premium rate and u the initial reserve.
From equation (17) we have:

Y(u) = /\/QT?A,@()\,G,U)JEA,@(G,A)d@d)\.

1 1 A
From the non-ruin condition, we have ; =cE(W;) > E(X) = ] then § > g < 6. Hence, if
c

A
0 < = the ruin is certain (¢ o (u) = 1). It follows that
c

() = /O /0 ° Fro(8, \dodA + /0 /A Un oM 0,1) fr.o(0, \)dbdA, (18)
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3.1 Explicit ruin probability for product copula

The following theorem gives the formula of the ruin probability in the ordinary renewal process where A
and O are independent.

Theorem 1. Consider the model defined by equation (1) such that conditional on A the counting pro-
cess follows Poisson process. (X k)k < ¢ are such that conditional on O, they are i.i.d and follow expo-
nential distribution. Assume that the random variable © has a mixing Erlang distribution with density

p n

fo(8) = Z ( aﬁll)' gt exp(—~,0). Assume further that A has a mixing Erlang distribution with den-
n—1)!

q b /Bn

. J

sity fA()‘) = Z (n _]1)|

j=1 '

(a;)?_; € N. If (©, A) are independent, then the infinite ruin probability is given by:

A" Lexp(—B;\) where S0 a; = 1, Z'}:l bj=1p,q€N, (a;)!_, € Nand

W )—zp:i -b-{l— [Cﬁjrn_lg(%—lﬂw r}
Yo i=1 j=1 o cBj + i — k cB;
_{_iin_la,b.n—i_k(n—i_k_l)[ i, }n[ i+ u :|k+1 (19)
p e 7 J’n,—l k (fyzﬁ-u)(cﬁj_'_fyl) Cﬁj“—% )

where w is the initial reserve and c is the premium rate.



Proof. Using equation (18), the infinite ruin probability is given by
(0.9] 2 oo o
s = [ [ se@nears [ [T vwannse@omnmasan
0 Fay
A
€ alfyz n—1
/)jh </ }: D) 0 emx—%mmOdA

+/ Afa(X) exp ( / Z an; 9”_2 exp(—(y; + u)0)dodA,

(n—1)!
n—1
/ fa(A (1—Zaiexp(_1)\)2(czk)' >d/\
=1 k=0 '
A p a,_yn n—1 ")/ +u k \
- A A — 11 7 _ i A
+C/0 fal( )eXp(c );m_l 7+un1kzo pyx exp( (. _|_u)c)’
p q n-l n Ak
% ;b By Akl eB; + i
=13 [ e (- (T
i=1 j=1 k=0
S aiV;'bi B} (v +w)kti=n oo B; + i
¢ ¢ )\nJrk (P Tnh )\ dA
+;;Z%(n—l'k' n—1)ck+1 /O exp (= (———)A)dA,
n—1 n
_ ii a; jﬁ (n+k:—1)! etk
i=1 j= 1k::0 n_]. k!ck Cﬁj—l—fy])n-‘rk’
azfy’ ]ﬂ (f}/z""u) c
k)!
+;J§1kzo(n_1)'k' (n—l)ck-‘rl (n+ ) (C6j+7i)n+k+17
p qg n—1 ok
aibj(cBy)" vy (n+k—1
:1_222%
i=1 j=1 k=0 (C/Bj +'Yi> + k
p q n—1
ntk ibj (ciB;)" n+k-—1
+;]§::1kzzon 1('7 —|—u)n k I(CB +7)n+k+1 k R
L 2n—1n-1 k
cB; 2n — 1\ [ 7
=1- a;b; J ] < )[ ]
;; JLﬁjJr% D k cB;

k=0

J
P g n-1 n k+1
n+kn+k—1 cvi3j Y +u
#2S  enn TH(); '

i+ u)(eBi + i) LeBy + i

This proves the statement.



3.2 Ruin probability with copula

If we assume that the dependence structure between A and O is given by an Archimedean copula, then the
ruin probability is given by:

/ / fo.a(0,X)dodA +/ / —exp (60— é) u) fo,n (6, A)dodA, (20)

where fg A (6, A) is the joint distribution of A and O and is given by

2

forl0,3) = 50 C(Fo(6), FA(N) fo(0)fa(N).

and C(u,v) is a copula, (u,v) € [0, 1]2.
The integral (20) is difficult to evaluate in most of cases with some copulas. In the next subsection we derive
an upper bound of the ruin probability under the dependence assumption.

3.2.1 Upper bound of the ruin probability with dependence
The next theorem gives an upper bound of the ruin formula in the ordinary case where the random variables
© and A are dependent.

Theorem 2. Consider the model defined by equation (1) such that conditional on A the counting process
follows Poisson process. (Xi)r > o are such that conditional on ©, they are i.i.d and follow exponential
distribution. Assume that (A, @) are dependent and also the Laplace’s transform ( fj{7 o(s, t)) of A and ©
exists, then the upper bound of the ruin is given by:

P(u) < féa(u, —%), 1)

where u is the initial reserve and c is the premium rate.

Proof.

o0 A o0 o0

wlw) = [ [ foatonasar+ [ [T wtur6) 06,100
o Jo 0 2
oo A oo o0 )\ A
= / / foa(0,\)dodA +/ / —e (9_?)“]“@ A0, \)dbdA.
o Jo © 7 o Jr b ’
. .. _C 1 A o
In one hand, from the non ruin condition X > ] <= p < 1 which implies,
c
/ / foa(0,X) d9d)\+/ < f@ A0, \)dadA.



In the other hand A > ¢ <= e~ (97%)“ > 1 which implies,

/ / f@A (6, ded)\+/ / f@ A(60,2)dfd ),
/ / f@ A (6, 2)dod,

< fé A (u, _E)

3.2.2 Numerical illustration with Clayton copula.

Let © follows exponential distribution with parameter a = 5 x 1073, A follows exponential distribution
with parameter b = 10~3. Assume that the dependence structure between © and A is modelled by Clayton
copula with parameter c.

Tables [1 - 2] below give some numerical values of the ruin probability and its upper bound for some values
of o with respect to the initial surplus wu.

Table 1: Ruin probability with Clayton copula parameter & = 0.75 and premium rate ¢ = 25%

u 0 10 25 50 75 100 150 200 250
Numerical value | 0.7007 0.6939 0.6846 0.6708 0.6587 0.6480 0.6298 0.6149 0.6024
Upper bound 1 0.9895 0.9717 0.9379 0.9002 0.8598 0.7755 0.6910 0.6064

Table 2: Ruin probability with Clayton copula parameter & = 1 and premium rate ¢ = 25%.

u 0 10 25 50 75 100 150 200 250
Numerical value | 0.6893 0.6828 0.6736 0.6602 0.6484 0.6380 0.6205 0.6062 0.5942
Upper bound 1 0.9901 0.9756 0.9524 0.9302 0.9091 0.8696 0.8333 0.8000

For a fixed initial reserve u, increasing the parameter « increases the ruin probability which means that high
losses are expected under the dependence scenarios.

4 Ruin probability in the delayed renewal case

In this section we derive the Laplace transform for the ruin probability with the delayed renewal process.
An explicit expression of the ruin under the following assumptions:

* The claim sizes are exponentially distributed ((X k‘@ = 9) >0 ™ exp(@));

 The inter-arrival time W1 ‘A = A\ ~ exp(\1) and (W,‘A = A
identically distributed,

)iso ~ €xp(X2) are independent and

is also given.
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4.1 Laplace transform for conditional ruin probability in the delayed renewal process

The following proposition expresses the Laplace transform of the ruin probability when the counting process
is assumed to be a delayed renewal process.

Proposition 1. Consider the mixed delayed Poisson process for the claim arrival where the claim severities
given © are i.i.d with density fx |o(z,0). Assume that the distribution of the first occurrence time is
exp(A1) and the forthcoming claim times are i.i.d. and follow exponential distribution with parameter
Ao. Furthermore, assume that the Laplace transform for all quantities involved exist. Then the Laplace
transform for the delayed ruin probability is given by:

~ A Cp(wx A @()\1,)\2,9,0) — 1) ~
d A Aoy 0,p) = —< d )\,)\,90—1(1+ 0], @2
Vi, a0,0(A1, A2, 6, p) o |Phase (A1, A2,0,0) ” T (0.0 +p— fp,0))], 22)

where ¢X17A279(A1, A2, 0, u) is the ruin probability for the ordinary renewal process and c represents the
premium rate.

Proof.
VR oA, A2,0,u) =P[X1 > u+cTi [A; = A, Ay = X, © = 0]

u+ct
+ /0 /O U8 a0 A, Bt et — 1) fxy | 0@, 0) fry | ayon, (B)dadt,

= / Ixi10(®,0)fr, | Ay=x, (t)dxdt
0 u+tct

u+-ct
+/() /0 ¢0(A1;A2797U+Ct_1’)fx1 ‘ @<$70))fT1 | A1=/\1(t)dxdt'

Let z = w + ct then we have

wj‘{h/\m@()\l,)\g,e,u) —exp / / Ix,1e(z,0) exp( A= )dxdz

A
+—lexp / / VR, Ar.0(A1, A2, 0, z—x)fx, | ez, 9)exp( AL — )dxdz

taking the derivative of the above expression yields

A
(wfd\l,/\g,@(Al?)\Q’e?u))/ = %wil,/\g (Al’A279 'LL - / fX1 | @ z 0)
A U
= [ 0 ne O 0= ), oo O)d
)\ A —
*1¢A1 A2,© ()‘h /\2797u) - %FXl | 9(“79)

- C/o YR, As0(A1 A2, 0,u —2) fx, | o, 0)da.

By taking the Laplace transform on both side of the above equation, we have
- A - A -
pwy\l,Ag,G(}‘la )\2> 9,]9) - wjd\h[\%@()\la )‘27 97 0) = ?¢7\17A279(A17 )\27 evp) - ?H(p7 9)

< ~
A 2. 0.0) f0.6).
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which gives by rearranging

_ c N /- _ ~
711%1,/\2,@(/\17)\279&): op— ¢X1,A2,@()\1a/\27970)—Cl<H(P’9)+%((1,/\2,@()\1,)\2,9,P)f(p79))]- (23)

A1
Similarly:

70 o A 70 A2 ~
p¢A1,A27@(A17 )\279,17) - q/JAl,A%@()‘l? A27070) = ?2¢A17A2,6()\17)\2707p) - ?QH(p) 9)

A -, .
- %wAl,AQ,@()\17 A2, 0, p)f(p’ ‘9)

By rearranging, we get:

1_f(pa0)

c° )\,)\’670 —Aﬁ ,(9 ~
VR, As,0(A1, A2, 0,0) — A H (p, 0) where F(p,6) = — (24)

Ao f(p,0) +cp — Ao
and f(p, 0) is the Laplace transform of f X, | ©(z,0). Then substituting (24) in (23) yields the result O

,(Z}[OXLAQ,@()\M )\27 07p) =

4.2 Explicit formula for the conditional ruin probability in the delayed renewal process

The following corollary expresses the Laplace transform of the ruin probability when the claims are mixed
exponentially distributed.

Corollary 1. In the delayed Poisson risk model, where the claims severities are i.i.d. and follow exponential
distribution with parameter © the Laplace transform of the ruin probability is given by:
A1

p R 1
HunsaOrin00) -3 (o + ) @

c

7d
QZ)Al,A%@()\b A2, 9727) = ﬂ

where c represents the premium rate.

Proof. First recall that when the claims are conditionally exponential then
A
VR, Ay o(A1,22,0,0) = —; For the proof, we refer to Albrecher et al. [1]
b k) C

Therefore using equation (24), we have:

Cw?\h/\g,@()\la >\2, 9, 0) — ]%

Pia0(M: 2e:0.p) BT T
B A2p
~ 0(cp?+ (e — A2)p)’
Y

Sl (0-%)

Substituting the above equation into (23) with f(p, ) = zﬁ and H(p,0) = zﬁ yields:

~ A 1 A 1 0
d Ao, 0,p) = — S { d A1, Ao, 60,0 —1( 22 )}
VA 40,0 (A1, A2, 6, p) P Visaz,0(A1s A2, 6,0) — = p+9+c9p+(9*%2)p+9
C d /\1 1 )\2 1 )}
- At A2, 60,0) — 2L b2 .
Cp_)\l |:w/\17/\27@( 1 2 ) c (p+0 c (p+(97);2))(p+6)
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Theorem 3. Under the assumptions of Corollary (1) the ruin probability is given by

A A
d . 1 2
Vis,nz,0(A1; Ag, 0, 1) = min {wﬁcg exp (— (6= —")u), 1}- (26)

Proof. The elementary decomposition of equation (25) is given by:

¢X17A2,@()\1, )‘27 07 0)

1;7\17/\2,@()\17)\279?1)) = >\1
pP=rc
A A
_1[ 041/\_1_ Qg +2< 043/\_1_ 044A S ﬂ,
clp—2 p+60 c\p—2 p+(9—72) p—+0
where
= — ' ap=—— . az= ¢
TN F T A A T M+ ) (M — Ag + ch)
C2 02
R VY Vi 7y L VY W)
Taking the inverse Laplace transform of each term, yields
A A A
wXLAQ,@)()\l; )\27 evu) = [w?\hAQ,@(Aly )‘27 07 0) - %(al + ?2053)] exXp (%U)

A

ALA
_ 222a4exp (- (60— ?)u) - (o + ?2045)] exp(—0u),

A A A
d 1 2 1
p— _——_—, 1 e —

[wm,/\z,@(/\l,)a,@,o) " +C€< b vw +C€>] exp ( - w)
M
Ay — A1 —cb
)\1 C )\2 62
-2 - 22 —0
- < A1+69+ . )\2()\1+69)>exp( u),

A

d 1
= NN 0.0) —
w)/\l,/\m@( 1,12, 70) M — My + B

)\1 )\2

xexp(— (9— ?)u)

Jexp (*Lu)

since uli}ngo /llz)t/i\l,Ag,@()\l? A2, 0, u) = 0 and due to the fact that

[1/)‘/{1 Ap.0(A1, A2,0,0) — m] is independent of u, the necessary and sufficient condition is that

)\
d 1
Ai.Ao.© A, A0,0,0) — ———— =0
dj 1,2, ( 1,12, VU, ) Al )\2 ce Y

therefore:
A2

A A
d 1 d 1
Yhinao (20, 0.0) = =g enee Wi oOnndabu) = S5 S e (= (0= ).

provided that cf > Ao
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Remark 2. If \; = Ao = A then

A A
wy\l,Az,@(}‘la A2, 97“) = w?\hAQ,@()‘lv A2, 0, u) = E €xXp |:_ <9 - C) u:| with ¢ > A

The ruin probability in the delayed model is consistent with the ordinary model.

4.3 Unconditional ruin probability in the delayed renewal risk model

In the following section, we derive an analytical expression of the unconditional ruin probability for a given
distribution of A1, A2 and 6 in the delayed renewal risk model.

Theorem 4. Assume that A1, As and 0 follow a general mixing exponential distribution with densities given
by

n
¥) =Y aipiexp(—pmix), fa,(y me exp(—v;y), fan(z Zmakexp( agz),
i—1 j=1 k=1

where 33 ja; = 1, 3350 by = 1, 330 re = 1and (n,m,q) € N3, (a;)™, € Ry, (b; )ity € Ry and
(Ti)zzl € R.. Then, the ruin probability formula in the delayed renewal process is given by

a;i by
ZZZ U; —f—zc';] + coy

1—1] 1 k=1

LI a;ifhibi~y . rROR A cy; + abit @n
; o .
#3oD Yy e [ty ()
T GOk T Ut Vit
il 1 il 1 . . . )

where ay”" = —————— and ay = ———————,uis the initial reserve and c is the premium
4 Bi—Hi—U Pitu—py ~;
i c c J

rate.

Proof. From the expression of the conditional ruin probability of the delayed renewal risk process defined
by (26), the unconditional ruin probability can be expressed by:

o pl2 A2
/ / / IarAs,0(A1, A2, 0)dOdN1d o
o Jo Jo

/ /Az /A2 PR, Aso (A1, A2, 0,u) fa, ap.0(A1, A2, 0)dOdA dNs.
0 A2 fAg

From equation (26), we have:
o 2 e
/ / / Ta1,00,0(A1, A2, 0)dOdA1dA: (28)

A2
/ / /A2 N )\2+00exp( (9——) ) fay, 00,0 (A1, A2, 0)dOdA 1 dNs.

LetS = c®© — Ay, U = Ale_E I{Algc@}ﬂ{szo},and\f = A1+ S.
Therefore

U U
w?l\l7A2,@(A17 /\2,9, u) = V, Where U= A1 exXp ( — ZW)IL{A1§C@}1{SZO} and V = A1 =+ S.
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Distribution of S = cO — As.
Consider the case where S > 0. It follows that

P[S < 4] :P[c@—A2<s]
=P[O < (A2+s]

oo Ez—i—s n q
-/ ( / Zawexp(—uim)x)zmak exp(—axs),
0 0

i=1 k=1
n

/ Zrkak exp(—ay2) Zai [1 —exp(— %(z + 3))} dz,

=1

q .
/ Z a; [Z Ty exp(—agz) Z TR eXp(—agz) exp ( - Z(% + O‘k)) dz,
=1 k=1
zl—Zaiexp(—/zis)/ Zrkakexp(—z(%—i—ak))d%
i =1
o ;T &
=1 C;;cak—ﬂh 65)'

Similarly for S < 0 we have

ZZ GilkHi exp(ags).
=1k

T cog +
Therefore
n q _Hig .
aipirgoy | e e si s>0
s(s) = — (29)
Is(s) ;;cak-km{eo‘ks si s<0
then,

+
o\..
8
o
o
n
c\
Q
=
=
=
V)
@
>~
on
>
g
="
(]
—~
>~
NS
=
—
>
et
=
@
S~—
o.
>
[\
o,
>~
et
o,
IS

- / N / " fan @) s (9) o (2)dadyds

0o A —u
+/0 /{,\1< 0} /zo Wfs(s)f@(e)fm(Al)dsde/\h

= Arexp (S
:/0 / / Fao(2) fa: (y) fo (2 )dazdydz—i—E[MH{MSC@}H{SZO}7

= [ [ i@ wieisdn: + 8| g

15



According to Cressie et al. [8],

E|:U:| :/ lim iNI\/ U( tl,tg)dtl.
0

to—0— tQ

My u(—ti,t2) = E 6t1V+t2U}

- .
] 1{A1<c®}1{s>o}]’

— E e(—t1+t267ES)A1—tls ]l{AlSc@}]l{Szo}] ,

/0 E|:€(t1+tze7és)/\1tlsﬂ{Algcg}‘S = 3:| fs(s)ds,
:/0 EI:e(—tl-l-tze_zs)A1—t15]{Al<C®}] fs(s)ds

o]
N /0 e MA 1y, ooy (— T 1267 %) fi(5)ds

0 —(24t1)S )y —t1A
- B tl’tQ):E[e i e

Therefore,

. m s ﬁo ve™ (X050 o (0) fy, (0) f (5)d6dud sy,

00 n ' m
/ / fs(s —(%4t1)s / ve 1Y Zexp (- %v) Z b, exp(—y;jv)dvdsdty,
0 P =
LG Qi i T O t +“1+u t1+7 )U
:[:LA E:E:Cak+ﬂi ‘/ E:E:%JWUE T e/ dvdsdty,

i=1 k=1 i=1 j=1
NN BifhiTRO
:/0 ;;(Cak-i‘ﬂi) (tl-l-“’—m ;;az 5 7i (t 1 _|_uz)2dt1’
_ i i i Z a;arb;rypiyj o /°° dtq
TS = ok T 0 (t1+HT) (t 7+ %)27
i=1 j=1 k=1 (=1 ’”L“z o tit 7T (t1+%+c) t1+%+
where ay’ b — m, ay? b= % and as L — ’]’ . Therefore,

i
[ :| m q n a; g ﬂ]rkakal |: i)l In <C'7j +Hl> N alld, :|
Z Z Z Z cop + g 2 Y + % '

U+ g
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Moreover,

/ / / s (@) a0 o (dadyds = 3737 abymus / ~nretean)zg,,

i=1 j=1 k=1
U a;bibir
DD MW o
,uz—i-c'yj—l—cak

=1 j=1 k=1

Putting equation (31) & (30) together yields the result. O

Corollary 2. For the special case where © ~ exp(u), A1 ~ exp(y), Ao ~ exp(«a) and they are
mutually independent we have,

Vh(u) = a R {@ln <’YC+’“‘>+ il ] (32)

cytea+p  ca+p U+ v+ £
1 1
where ay = ——, a1 = 5 .
(v=2) e
4.4 Upper bound for the ruin probability in the delayed renewal risk model in the case of
dependence

Let assume that the trivariate random variables A;, Ay and © are dependent. Moreover assume that this
dependence structure is modelled by a copula, then the ruin probability formula is given by:

o p2 A2
= / / / IarAs,0(A1, A2, 0)dOdN 1 dNs
o Jo Jo

[ s ohone a0 a0 e, )b,
O Lz Lz

- e
:/Oo/c / fAl,sze(Al,A2,9)d9d>\1d)\2
/ / 2 A=Ay +cf A2+c9 exp (— (G—i) ) far s (A1, Ag, 0)dOdA ds.
where
Faine,0 (A A2y 0) = c1a3(Fay (A1), Fa,(A2), Fo(60)) fay (M) fas (A2) fo (0),
with

83C123(m7 Y, Z)

c12s (Y, 2) = 0x0ydz

Since it is hard to determine the analytical expression of this integral, in the next theorem we derive an upper
bound of the ruin probability in the delayed renewal model with dependence.

17



4.4.1 Upper bound of the ruin probability with dependence

The following theorem gives an upper bound of the ruin probability where the random variables ©, A; and
A5 are dependent.

Theorem 5. Let assume that the random variables A1, Ao and 0 are dependent, assume further that the

Laplace transform fy, o(x,s) of (A2, ©) exists, then an upper bound of the ruin probability in the delayed
renewal process with dependence is given by

u

b (u) < fé 4, (u —;) , 33)

where c is the premium rate and u the initial reserve.

Proof.

Az A9
// / Iarns,0(A1, A2, 0)dBdA1d o

A2
/// — A2+Ceexp( (0~ “2)u) fay s (s Aoy B)dBN D,

g/ / /CfAl,Az,e)()q,AQ,G)deAld)Q

A2
/ / /AQ )\1 )\2 e exp ( ((9 — 7) )fAl,A%@(/\l, A2, 0)dOdAidNs.

Since the non-ruin condition implies

A
0 > —2<:>00—/\2 > 0,

C
< cl— Ao+ A1 > A,
cd — Ny + N\ > 1,
A1 -
At f(OfA)u 7(97>‘)u
- c < c 34
AR W = ¢ ’ G

A
moreover e (97?)“ > 1whenf < ﬁ, combining this relation with (34) gives:

/ / / e fAl,A27 ()\1,)\2,9)d9d}\1d}\2

A2
/ / /)\2 eXp 0 - 7) )fAl,A2,@()\la)\Q,Q)ded)\ld)\Q’

A
/ / / exp 9 - l) )fA1,A2,@()\17 >‘27 a)ded)\ld)Qu

A2
/ / exp 9 — 7) )fA1 A2,© ()\1, )\2, 0)d9d)\1d>\2,
< f@ Ao ( 7_5) .

Which proves the statement.
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4.4.2 Numerical illustration in the independence case

Let © follows exponential distribution with parameter 1 = 5 x 102, A follows exponential distribution
with parameter « = 103 and A; follows exponential distribution with parameter . Assume further that
those random variables are mutually independent.

Tables [3 - 4] below give some numerical values of the ruin probability and its upper bound where v = 20
and v = 200 with respect to the initial surplus v using matlab for numerical integration.

Table 3: Ruin probability with premium rate ¢ = 25% in the delayed risk process where v = 200.

u 0 10 25 50 75 100 150 200 250
Numerical value | 0.6643 0.6639 0.6633 0.6624 0.6616 0.6609 0.6596 0.6586 0.6578
Upper bound | 0.6705 0.6699 0.6689 0.6676 0.6664 0.6653 0.6635 0.6620 0.6607

Table 4: Ruin probability where premium rate ¢ = 25% in the delayed risk process where v = 20.

u 0 10 25 50 75 100 150 200 250
Numerical value | 0.6240 0.6217 0.6184 0.6133 0.6087 0.6046 0.5973 0.5912 0.5861
Upper bound | 0.6717 0.6678 0.6623 0.6539 0.6464 0.6396 0.6279 0.6182 0.6100

For a fixed initial reserve u, increasing the parameter of the distribution of A1, increases the ruin probability.

5 Conclusion

We have found the explicit formulas for the ruin probability with a general mixed exponential risk model in
the ordinary and the delayed renewal risk process when the claim’s distributions and the inter-claim time’s
distributions are independent. As the explicit expression of the ruin probability is difficult to obtain in the
dependence case, we propose an upper bound for the ruin probability.
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