157 research outputs found

    Rapid Environmental Change over the Past Decade Revealed by Isotopic Analysis of the California Mussel in the Northeast Pacific

    Get PDF
    The anthropogenic input of fossil fuel carbon into the atmosphere results in increased carbon dioxide (CO2) into the oceans, a process that lowers seawater pH, decreases alkalinity and can inhibit the production of shell material. Corrosive water has recently been documented in the northeast Pacific, along with a rapid decline in seawater pH over the past decade. A lack of instrumentation prior to the 1990s means that we have no indication whether these carbon cycle changes have precedence or are a response to recent anthropogenic CO2 inputs. We analyzed stable carbon and oxygen isotopes (δ13C, δ18O) of decade-old California mussel shells (Mytilus californianus) in the context of an instrumental seawater record of the same length. We further compared modern shells to shells from 1000 to 1340 years BP and from the 1960s to the present and show declines in the δ13C of modern shells that have no historical precedent. Our finding of decline in another shelled mollusk (limpet) and our extensive environmental data show that these δ13C declines are unexplained by changes to the coastal food web, upwelling regime, or local circulation. Our observed decline in shell δ13C parallels other signs of rapid changes to the nearshore carbon cycle in the Pacific, including a decline in pH that is an order of magnitude greater than predicted by an equilibrium response to rising atmospheric CO2, the presence of low pH water throughout the region, and a record of a similarly steep decline in δ13C in algae in the Gulf of Alaska. These unprecedented changes and the lack of a clear causal variable underscores the need for better quantifying carbon dynamics in nearshore environments

    Global cooling as a driver of diversification in a major marine clade

    Get PDF
    Climate is a strong driver of global diversity and will become increasingly important as human influences drive temperature changes at unprecedented rates. Here we investigate diversification and speciation trends within a diverse group of aquatic crustaceans, the Anomura. We use a phylogenetic framework to demonstrate that speciation rate is correlated with global cooling across the entire tree, in contrast to previous studies. Additionally, we find that marine clades continue to show evidence of increased speciation rates with cooler global temperatures, while the single freshwater clade shows the opposite trend with speciation rates positively correlated to global warming. Our findings suggest that both global cooling and warming lead to diversification and that habitat plays a role in the responses of species to climate change. These results have important implications for our understanding of how extant biota respond to ongoing climate change and are of particular importance for conservation planning of marine ecosystems

    Effects of Elevated Temperature and Carbon Dioxide on the Growth and Survival of Larvae and Juveniles of Three Species of Northwest Atlantic Bivalves

    Get PDF
    Rising CO2 concentrations and water temperatures this century are likely to have transformative effects on many coastal marine organisms. Here, we compared the responses of two life history stages (larval, juvenile) of three species of calcifying bivalves (Mercenaria mercenaria, Crassostrea virginica, and Argopecten irradians) to temperatures (24 and 28°C) and CO2 concentrations (∼250, 390, and 750 ppm) representative of past, present, and future summer conditions in temperate estuaries. Results demonstrated that increases in temperature and CO2 each significantly depressed survival, development, growth, and lipid synthesis of M. mercenaria and A. irradians larvae and that the effects were additive. Juvenile M. mercenaria and A. irradians were negatively impacted by higher temperatures while C. virginica juveniles were not. C. virginica and A. irradians juveniles were negatively affected by higher CO2 concentrations, while M. mercenaria was not. Larvae were substantially more vulnerable to elevated CO2 than juvenile stages. These findings suggest that current and future increases in temperature and CO2 are likely to have negative consequences for coastal bivalve populations

    The inference of gray whale (Eschrichtius robustus) historical population attributes from whole-genome sequences

    Get PDF
    Commercial whaling caused extensive demographic declines in many great whale species, including gray whales that were extirpated from the Atlantic Ocean and dramatically reduced in the Pacific Ocean. The Eastern Pacific gray whale has recovered since the 1982 ban on commercial whaling, but the Western Pacific gray whale-once considered possibly extinct-consists of only about 200 individuals and is considered critically endangered by some international authorities. Herein, we use whole-genome sequencing to investigate the demographic history of gray whales from the Pacific and use environmental niche modelling to make predictions about future gene flow.Our sequencing efforts and habitat niche modelling indicate that: i) western gray whale effective population sizes have declined since the last glacial maximum; ii) contemporary gray whale genomes, both eastern and western, harbor less autosomal nucleotide diversity than most other marine mammals and megafauna; iii) the extent of inbreeding, as measured by autozygosity, is greater in the Western Pacific than in the Eastern Pacific populations; and iv) future climate change is expected to open new migratory routes for gray whales.Our results indicate that gray whale genomes contain low nucleotide diversity and have been subject to both historical and recent inbreeding. Population sizes over the last million years likely peaked about 25,000 years before present and have declined since then. Our niche modelling suggests that novel migratory routes may develop within the next century and if so this could help retain overall genetic diversity, which is essential for adaption and successful recovery in light of global environmental change and past exploitation

    Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated With Coronary Artery Disease

    Get PDF
    Background: Genome-wide association studies have so far identified 56 loci associated with risk of coronary artery disease (CAD). Many CAD loci show pleiotropy; that is, they are also associated with other diseases or traits. Objectives: This study sought to systematically test if genetic variants identified for non-CAD diseases/traits also associate with CAD and to undertake a comprehensive analysis of the extent of pleiotropy of all CAD loci. Methods: In discovery analyses involving 42,335 CAD cases and 78,240 control subjects we tested the association of 29,383 common (minor allele frequency >5%) single nucleotide polymorphisms available on the exome array, which included a substantial proportion of known or suspected single nucleotide polymorphisms associated with common diseases or traits as of 2011. Suggestive association signals were replicated in an additional 30,533 cases and 42,530 control subjects. To evaluate pleiotropy, we tested CAD loci for association with cardiovascular risk factors (lipid traits, blood pressure phenotypes, body mass index, diabetes, and smoking behavior), as well as with other diseases/traits through interrogation of currently available genome-wide association study catalogs. Results: We identified 6 new loci associated with CAD at genome-wide significance: on 2q37 (KCNJ13-GIGYF2), 6p21 (C2), 11p15 (MRVI1-CTR9), 12q13 (LRP1), 12q24 (SCARB1), and 16q13 (CETP). Risk allele frequencies ranged from 0.15 to 0.86, and odds ratio per copy of the risk allele ranged from 1.04 to 1.09. Of 62 new and known CAD loci, 24 (38.7%) showed statistical association with a traditional cardiovascular risk factor, with some showing multiple associations, and 29 (47%) showed associations at p < 1 × 10−4 with a range of other diseases/traits. Conclusions: We identified 6 loci associated with CAD at genome-wide significance. Several CAD loci show substantial pleiotropy, which may help us understand the mechanisms by which these loci affect CAD risk

    Periodontitis and Outer Retinal Thickness: a Cross-Sectional Analysis of the United Kingdom Biobank Cohort

    Get PDF
    \ua9 2024 American Academy of OphthalmologyPurpose: Periodontitis, a ubiquitous severe gum disease affecting the teeth and surrounding alveolar bone, can heighten systemic inflammation. We investigated the association between very severe periodontitis and early biomarkers of age-related macular degeneration (AMD), in individuals with no eye disease. Design: Cross-sectional analysis of the prospective community-based cohort United Kingdom (UK) Biobank. Participants: Sixty-seven thousand three hundred eleven UK residents aged 40 to 70 years recruited between 2006 and 2010 underwent retinal imaging. Methods: Macular-centered OCT images acquired at the baseline visit were segmented for retinal sublayer thicknesses. Very severe periodontitis was ascertained through a touchscreen questionnaire. Linear mixed effects regression modeled the association between very severe periodontitis and retinal sublayer thicknesses, adjusting for age, sex, ethnicity, socioeconomic status, alcohol consumption, smoking status, diabetes mellitus, hypertension, refractive error, and previous cataract surgery. Main Outcome Measures: Photoreceptor layer (PRL) and retinal pigment epithelium–Bruch\u27s membrane (RPE–BM) thicknesses. Results: Among 36 897 participants included in the analysis, 1571 (4.3%) reported very severe periodontitis. Affected individuals were older, lived in areas of greater socioeconomic deprivation, and were more likely to be hypertensive, diabetic, and current smokers (all P < 0.001). On average, those with very severe periodontitis were hyperopic (0.05 \ub1 2.27 diopters) while those unaffected were myopic (−0.29 \ub1 2.40 diopters, P < 0.001). Following adjusted analysis, very severe periodontitis was associated with thinner PRL (−0.55 μm, 95% confidence interval [CI], −0.97 to −0.12; P = 0.022) but there was no difference in RPE–BM thickness (0.00 μm, 95% CI, −0.12 to 0.13; P = 0.97). The association between PRL thickness and very severe periodontitis was modified by age (P < 0.001). Stratifying individuals by age, thinner PRL was seen among those aged 60 to 69 years with disease (−1.19 μm, 95% CI, −1.85 to −0.53; P < 0.001) but not among those aged < 60 years. Conclusions: Among those with no known eye disease, very severe periodontitis is statistically associated with a thinner PRL, consistent with incipient AMD. Optimizing oral hygiene may hold additional relevance for people at risk of degenerative retinal disease. Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article

    Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure

    Get PDF
    Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies

    E-commerce ethics and its impact on buyer repurchase intentions and loyalty: an empirical study of small and medium Egyptian businesses

    Get PDF
    The theoretical understanding of e-commerce has received much attention over the years; however, relatively little focus has been directed towards e-commerce ethics, especially the SMEs B2B e-commerce aspect. Therefore, the purpose of this paper is to develop and empirically test a framework that explains the impact of SMEs B2B e-commerce ethics on buyer repurchase intentions and loyalty. Using SEM to analyse the data collected from a sample of SME e-commerce firms in Egypt, the results indicate that buyers’ perceptions of supplier ethics construct is composed of six dimensions (security, non-deception, fulfilment/reliability, service recovery, shared value, and communication) and strongly predictive of online buyer repurchase intentions and loyalty. Furthermore, our results also show that reliability/fulfilment and non-deception are the most effective relationship-building dimensions. In addition, relationship quality has a positive effect on buyer repurchase intentions and loyalty. The results offer important implications for B2B e-commerce and are likely to stimulate further research in the area of relationship marketing
    • …
    corecore