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Global cooling as a driver of diversification
in a major marine clade
Katie E. Davis1, Jon Hill2, Tim I. Astrop1 & Matthew A. Wills1

Climate is a strong driver of global diversity and will become increasingly important as human

influences drive temperature changes at unprecedented rates. Here we investigate diversi-

fication and speciation trends within a diverse group of aquatic crustaceans, the Anomura.

We use a phylogenetic framework to demonstrate that speciation rate is correlated with

global cooling across the entire tree, in contrast to previous studies. Additionally, we find that

marine clades continue to show evidence of increased speciation rates with cooler global

temperatures, while the single freshwater clade shows the opposite trend with speciation

rates positively correlated to global warming. Our findings suggest that both global cooling

and warming lead to diversification and that habitat plays a role in the responses of species to

climate change. These results have important implications for our understanding of how

extant biota respond to ongoing climate change and are of particular importance for

conservation planning of marine ecosystems.
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C
hanges in climate, particularly global mean temperatures,
have long been identified as drivers of diversity turnover
on macroevolutionary scales1–4. Current rates of

extinction, partly resulting from anthropogenic climate change5,
are rapidly approaching those seen in the ‘big five’ extinction
events of the geological past, with the present biodiversity crisis
now being heralded as the sixth6. However, to predict the
probable effects of current and future climate change it is vital
that we understand past processes and trends. Of particular
concern is the threat to our oceans and freshwater ecosystems7.
The oceans contain an estimated 25% of extant global
biodiversity8, and marine organisms provide a vital
contribution to global ecology9. However, while the responses
of shelf marine invertebrates, as a whole, to a variety of climatic
and other factors has been investigated at a taxic level, this
investigation has yielded contradictory results; some studies
found that warming induced increased diversification, while
others found the opposite effect10–12. By contrast, more focussed
studies on marine molluscs over shorter time scales have found
no relationship between diversification and environmental
factors. Rather, species either track habitat13 or nutrient
availability14, or they go extinct. Terrestrial vertebrates, on the
other hand, appear to show a positive correlation between
speciation and global temperature15–17, while marine vertebrates
show either a positive correlation with warming or no correlation
with climate16–18. To date, no work has been carried out on the
relationship between speciation and climate of marine
invertebrates within a phylogenetic framework.

Here we examine the relationship between climate and
biological diversification for Anomura (hermit crabs, king crabs,
porcelain crabs, mole crabs and squat lobsters). Critically, we do
this in a phylogenetic framework, using the largest tree ever
assembled for the group. Anomura are an enigmatic infraorder,
containing species with a diverse array of ecologies and
encompassing a particularly impressive disparity of forms19.
They are also remarkable in having independently evolved
carcinisation in multiple lineages20. Anomura are united by the
general synapomorphy of a reduced anterior-most pair of
pereiopods used in gill cleaning, and the absence or severe
reduction of the tail. To date, 2,500 extant species have been
described21,22. The fossil record contains representatives of nearly
all extant families and the infraorder spans the Late Triassic
(Norian/Rhaetian) to the present day (ref. 23). Anomura have
colonized deep marine (from depths of over 5,000m) to littoral
environments, and are also found in freshwater and semi-
terrestrial habitats. Historical taxonomic controversies are now
largely resolved19, therefore their evolution provides an excellent
system in which to investigate the relationship between climate
and speciation in aquatic invertebrates.

Previous studies investigating the link between climate and
biological diversification have largely used a taxic approach,
treating species, genera and families as independent and assessing
changes in taxonomic diversity through time. Using a time-
calibrated phylogenetic supertree of Anomura, which broadly
matches a recent molecular phylogeny and is consistent with
recent taxonomic revisions, we calculate diversification rates for
the history of Anomura. We then perform correlation analyses of
palaeo-temperature proxies, and these diversification rates using a
Bayesian framework. Our analyses show a negative correlation
between the whole tree speciation rates and palaeo-temperature.
In detail, marine taxa show the same negative correlation, but the
single freshwater clade shows the opposite relationship: increased
speciation with warming. These results suggest that habitat plays
a role in how speciation rates are affected by temperature
changes, which in turn has implications for how we manage and
conserve extant aquatic biota.

Results
Supertree construction. We constructed a phylogenetic
supertree24,25 using 60 source trees from 40 papers published
between 1986 and 2011. The resulting tree of 372 taxa is the
largest phylogeny of Anomura published to date (Fig. 1). The
overall structure of the supertree is broadly similar to that in a
recent molecular phylogeny (137 taxa) of Anomura19, and is also
consistent with recent taxonomic revisions26, notably a much
reduced Galatheoidea (Supplementary Fig. 1). In our tree all
superfamilies are recovered as monophyletic with the exception
of the Paguroidea. Hippoidea are basalmost, followed by
Aegloideaþ Lomisoidea. The ChirostyloideaþGalathoidea form
a sister clade to the Paguroidea which contains the Lithodoidea.
The resolution of Lithodoidea within Paguroidea is well-
supported by both molecular and morphological data27. The
supertree was time-calibrated using fossil age data. Three
additional trees were generated using random perturbations of
the fossil age data to simulate changes to node calibrations that
could affect the robustness of our findings.

Diversification analysis. Using the phylogeny described above we
calculated diversification rates via the BAMM framework,
which implements a Metropolis Coupled Monte Carlo (MCMC)
method to calculate diversification rates along lineages28.
We accounted for sampling bias in the phylogeny for the
diversification analysis by providing BAMM with a list of species-
specific sampling probabilities. Species lists and classifications
used to calculate the taxon sampling were obtained from
WoRMS29. The analysis identified six significant rate shifts
occurring at different times and within six distinct clades (Figs 1
and 2). Changes in diversity dynamics are therefore not simply
triggered coincidentally and in parallel across multiple lineages
(as might be expected for some universal environmental driver),
but rather occur at different times contingent on the clade. All of
the rate shifts occur in the last B100Myr with three in the last
50Myr, despite the Triassic origination of Anomura. Shifts are
therefore more numerous and more recent than found in
previous, less speciose studies19. The additional trees obtained
using the altered node calibrations found the same diversification
shifts, plus an additional shift with the origination of the
Coenobitidae in the Miocene.

Climate correlation. Using these diversification rate shifts to
identify clades of interest we found speciation rates to be strongly
correlated with global palaeo-temperature as identified from
oxygen isotope (d18O) records, used as a proxy for palaeo-
temperature30,31 (Fig. 1). We performed correlations of all
realizations of the diversification curve in the MCMC analysis
(9,000 in total) for all Anomura against the global d18O curve. For
each realization a correlation coefficient was calculated between
� 1 (speciation rate increases with cooler temperatures) and 1
(speciation rate increases with warmer temperature). If the
correlation coefficient is zero then temperature has no effect on
speciation rate. We then tested whether the distribution of all
9,000 correlation coefficients differed from the null hypothesis of
a zero mean correlation coefficient (that is, no temperature
correlation). Considering all Anomura together resulted in a
significant negative mean correlation (detrended cross-correlation
analysis, rDCCA(s)¼ � 0.44, Po2e–16) with very few simulations
finding a positive correlation (Fig. 3). This finding implies that
over the entire Anomura, rates of speciation increase with cooler
temperatures. We repeated this within all of the clades that
showed a significant diversification rate shift. This revealed that
marine clades follow this same pattern, while the freshwater clade
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Figure 1 | Phylogeny of Anomura. The phylogeny is coloured to show diversification rate (dark blue: low rate; red: high rates) and scaled to the geological

timescale (bottom)54. The top panel shows the d18O curve30,31 superimposed on the average speciation rate for the anomuran phylogeny. Significant

diversification rate shifts are shown by red circles. Larger circles indicate higher probabilities. Highlighted clades are (from top to bottom) are Hippoidea,

Paguridaeþ Lithodoidea, DiogenidaeþCoenobitidae, Porcellanidae, Paramunida, Munida and Aegloidea. Diversification rate shifts are labelled

chronologically from 1 to 6. See text for details.
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(Aegloidea) shows the opposite trend: speciating more rapidly
with warmer temperatures (Table 1).

The earliest diversification rate shift (Fig. 1, shift 1) occurs in
the Upper Cretaceous and is located basally within the Aegloidea
(freshwater anomurans). The correlation of aeglid speciation
rates against global d18O is 0.19 (detrended cross-correlation
analysis, Po2e� 16, Fig. 3) indicating that higher global
temperatures were a potential causal factor of the increased
speciation rates. This rate shift is also associated with a significant
habitat change as the aeglids begin to colonize mid-latitude
freshwater habitats in South America19. In the Late Cretaceous we
see diversification rate shifts in Diogenidae (Fig. 1, shift 3) and in
the clade containing Paguridaeþ Lithodoidea (both clades of
hermit crabs—Fig. 1, shift 2). Both show strong negative
correlations between temperature and speciation rate of � 0.45
and � 0.70 respectively (detrended cross-correlation analysis,
Po2e� 16, Fig. 3) indicative of cooler temperatures driving
speciation. Porcelain crabs (Porcellanidae, Fig. 1, shift 4)
show a further negative correlation between speciation rate

and temperature (detrended cross-correlation analysis,
rDCCA(s)¼ � 0.39, Po2e� 16). A rate shift also occurs in the
Oligocene in Paramunida (squat lobsters, Fig. 1, shift 5), which
show a small negative correlation of speciation rate to
temperature (detrended cross-correlation analysis,
rDCCA(s)¼ � 0.34, Po2e� 16). During the Miocene we see
another negative correlation (detrended cross-correlation
analysis, rDCCA(s)¼ � 0.34, Po2e� 16,) of speciation rate and
temperature in Munida (squat lobsters, Fig. 1, shift 6). This is the
most recent rate shift, occurring at just 16Ma. In addition to
these correlations, we see another diversification rate shift in
Coenobitidae occurring in the additional trees with subtly altered
node dates generated to account for uncertainty in the data.
Coenobitidae are the only anomurans to have adopted a
semi-terrestrial mode of life therefore, as in the case of the
aeglids, this shift occurs coincident with a change in habitat. This
diversification rate shift also shows a negative correlation with
temperature (detrended cross-correlation analysis, rDCCA(s)¼ � 0.34
to � 0.56, Po2e� 16).
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Figure 2 | Speciation rates of Anomura and clades. The large panel (a) shows the speciation rate for the whole tree with the inset histogram

showing the distribution for all recorded speciation rate curves for both Pearsons’s and DCCA correlation coefficients. The mean correlation for the whole

tree is �0.709. Additional panels (b–g) for each of the clades that show a significant diversification rate shift. Clades are (from top right to bottom left):

(b) Paguridaeþ Lithodoidea (clade 2 in Fig. 1), (c) DiogenidaeþCoenobitidae (clade 3 in Fig. 1), (d) Porcellanidae (clade 4 in Fig. 1), (e) Paramunida

(clade 6 in Fig. 1), (f) Munida (clade 5 in Fig. 1) and (g) Aegloidea (clade 1 in Fig. 1).
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Figure 3 | Correlation coefficients of speciation rate and palaeo-temperature. Each panel shows a histogram of correlation coefficients between

paleao-temperature and the 9,000 diversification analyses. Panel (a) shows the result of analyzing the whole tree using both Pearson’s R and DCCA

(see methods) with a mean correlation coefficient of �0.709. Additional panels (b–g) show the results of the DCCA correlation for each clade

that showed a significant rate shift, with the mean correlation and an estimate of the error. Clades are (from top right to bottom left):

(b) Paguridaeþ Lithodoidea (clade 2 in Fig. 1), (c) DiogenidaeþCoenobitidae (clade 3 in Fig. 1), (d) Porcellanidae (clade 4 in Fig. 1), (e) Paramunida

(clade 6 in Fig. 1), (f) Munida (clade 5 in Fig. 1) and (g) Aegloidea (clade 1 in Fig. 1).

Table 1 | Correlation coefficients of temperature proxy versus speciation rates for the clades highlighted in Fig. 1.

Original tree 10% dates moved 15% dates moved 20% dates moved

Clade number PCC DCCA PCC DCCA PCC DCCA PCC DCCA

Whole tree �0.709 �0.440 �0.647 �0.405 �0.665 �0.411 �0.665 �0.409

1 0.226 0.187 0.349 0.228 0.358 0.234 0.415 0.238

2 �0.706 �0.453 �0.698 �0.657 �0.839 �0.776 �0.840 �0.778

3 �0.767 �0.702 �0.833 �0.767 �0.693 �0.656 �0.702 �0.663

4 �0.775 �0.39 �0.771 �0.388 �0.772 �0.385 �0.772 �0.383

5 �0.748 �0.338 �0.750 �0.345 �0.748 �0.337 �0.752 �0.351

6 �0.818 �0.342 �0.803 �0.607 �0.819 �0.344 �0.804 �0.607

Bold numbers indicate a positive correlation and are only found in the Aegloidea. The perturbed trees also show the same results.
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Discussion
At the infra-ordinal level, Anomura demonstrate increased
speciation with cooler temperatures; all clades that undergo a
significant shift in diversification rate also show this relationship
with the exception of the freshwater aeglids in which the pattern
is reversed. The process by which global cooling results in an
increase in diversification in some marine fauna could be due to a
number of factors32 including tectonic activity, changes in sea
level, decreased hypoxia or changes to ocean currents. Tectonic
activity has been linked to fluctuations in evolutionary rates33,
and during the last 60Ma there has been extensive tectonic
activity associated with the opening of the Atlantic ocean34,
which coincides with four of the six diversification rate shifts
identified in this study. There is a significant link between
tectonic activity and climate35, which makes it difficult to extract
the primary driver. However, tectonics alone is unlikely to be the
direct driver of speciation due to the global distribution of clades
that show diversification shifts. Changes in speciation rate cannot,
therefore, be attributable to tectonic events, such as the opening
of the North Atlantic, despite the apparent correlation of timing.
Global cooling also results in the lowering of sea level as seawater
is sequestered into ice sheets36; this reduces shallow-shelf habitats
causing habitat fragmentation and thereby increasing the
potential for allopatric speciation. Marine anomurans are
predominantly, though not exclusively, shallow water dwellers
and therefore particularly susceptible to marine regression. Bodies
of freshwater would not be affected in this manner by sea level
regression, which may explain the observed correlation of
increased diversification and global warming in the freshwater
anomurans (aeglids) that remains consistent with previous
work10,11. Moreover, higher temperatures have a tendency to
increase hypoxia, which is problematic for benthic species37, such
that a greater area of suitable habitat will be available during
cooler periods. Finally temperature change also drives changes in
ocean currents38, which may open up new habitats for marine
taxa with planktonic larval stages, and may also lead to changes in
heat distribution in the oceans. In addition to external factors,
niche modification from invasion of species may be also be a
driver of marine invertebrate speciation rates over geological time
scales39, and species may track habitats during times of climatic
variation13.

The effects of global temperature change are therefore tightly
linked and difficult to tease apart. It is likely that multiple
mechanisms drive the relationship between decreasing
temperature and increasing speciation rates; a pattern that we
speculate may extend to other groups of shallow-shelf dwelling
invertebrates. This stands in contrast to patterns observed in
terrestrial and marine vertebrates, whereby periods of warming
(not cooling) elicit diversification10,40. Hence, the relationship
between global temperatures and the dynamics of faunal turnover
are complex and the response of any given species to climate
change may be strongly contingent upon its habitat and mode of
life. While a model that simply predicts declining speciation rates
with global warming would be attractive and its implications
clear, that is, increased warming will accelerate the rates of
anthropogenic diversity decline already caused by other
mechanisms, the reality is more complex. Given that
crustaceans play a crucial role in marine ecosystems, as well as
providing an important food source for many societies, it is
important that management of marine ecosystems accounts for
this potential loss in biodiversity. Habitat clearly plays a role in
species response to climate change, as demonstrated here, and
future work will need to consider this when attempting to predict
future speciation rates and how to conserve key species. The
ultimate goal should be more realistic models of diversity
dynamics that utilize information on clade specific responses to

multiple factors. These have great potential for better predictions
of the probable fate of organisms in wake of future climate
changes41. With the current state of knowledge, however, limiting
warming and human influence on the environment is still the best
way of preventing species extinction.

Methods
Data collection and processing. Source trees were identified using the Web of
Knowledge Science Citation Index42 with the search terms: phylog*, taxonom*,
systematic* and clad* in conjunction with all scientific and common names for
Anomura from infraorder to superfamily level. These searches were carried out for
the years 1980–2011, and all papers potentially containing phylogenetic trees were
examined. All source trees, along with associated meta-data, such as bibliographic
information, character data and optimization criteria used, were recorded. See
Supplementary Table 1 and Supplementary Data 1 for data used.

We followed the protocol previously described43 in which source trees needed
to meet several criteria for inclusion in the analysis. These criteria were: (1) it
should be explicit that the author’s intention was to construct a phylogeny, (2) the
characters and taxa used in the analysis must be clearly identifiable and (3) the tree
should be based on an analysis of a novel, independent dataset. Non-independence
was defined as two or more studies that used the same character data and had
either identical taxa, or alternatively where one taxon set was a subset of the other.
In this latter case, the less comprehensive tree was removed from the dataset. In the
former case trees were combined into a summary consensus tree to create a single
tree for inclusion in the supertree analysis.

Nomenclature and taxonomic consistency. Operational taxonomic units (OTUs)
were standardized to avoid the inclusion of higher taxa and vernacular names that
would artificially inflate the number of taxa in the analysis. In addition synonyms
and misspellings were corrected as otherwise this could lead to inconsistencies.
Names were standardized using the online WoRMS database29. Paraphyletic taxa
were dealt with using the STK (refs 24,25), by calculating all possible positions of
paraphyletic taxa in a source tree and building a mini-supertree from these. Higher
taxa and vernacular names were removed from source trees by either substituting
the constituent taxa of those groups into a polytomy or, where possible,
substituting the actual species that the authors intended to represent. Definitions
for higher taxa were adopted from WoRMS. This substitution stage did not
introduce any taxa that were not already present in the dataset as any
inconsistencies were flagged by the STK. Once nomenclature had been
standardized, we checked that source trees had sufficient taxonomic overlap, such
that each source tree was required to have at least two taxa in common with a
minimum of one other source tree.

Supertree construction. The most commonly implemented supertree method is
Matrix Representation with Parsimony (MRP)44, whereby all taxa subtended by a
given node in a source tree are scored as ‘1’, taxa not subtended by that node are
scored as ‘0’, and taxa not present in that source tree are scored as ‘?’. Trees are
rooted with a hypothetical, all-zero outgroup. MRP is currently the only supertree
construction method with software implementation able to deal with large
(100þ taxa) datasets. We used standard Baum and Ragan MRP coding44, and
matrix creation was automated using the STK software24,25.

The matrix was analysed with TNT45 using the mult 30 option. A total of 1,000
replicates for each analysis were run, each using a different random starting point
for the heuristic search. The intention of this method is to search as much of the
tree space as possible within a reasonable computational time. The analysis found
432 MPTs of length 2,548 steps. Resolution was poor in both the strict and 50%
majority rule consensus trees. We therefore computed a Maximum Agreement
Subtree (MAST) using PAUP* (ref. 46) to remove the conflicting taxa. This
reduced the number of ingroup taxa from 599 to 397. In addition, we also
identified some rogue taxa in the resulting tree (see list in Supplementary Table 2),
and these were removed from the final supertree43. The phenomenon of rogue taxa
was first discussed by Bininda-Emonds and Bryant47 who noted that the MRP
method can lead to the creation of spurious clades and relationships that are not
present in any of the source trees (‘novel clades’). Although simulations have
suggested that such anomalies are unlikely to be a significant problem48,
empirical studies have found an incidence of novel clades affecting up to 3% of
taxa49. The final tree is available in Supplementary Data 2.

Phylogeny time-calibration. Supertree parsimony methods do not produce trees
with meaningful branch lengths for inferring dates of relative splits, as any branch
length data in the source trees is not retained by the MRP algorithm. Therefore, to
construct a time-scaled phylogeny, we obtained fossil dates from fossilworks.org
(Supplementary Data 3). Twenty-seven nodes were calibrated using fossil first
occurrence data (see Supplementary Data 3 for further details). These fossils were
assigned phylogenetically to either the stem or crown of clades using the taxonomy
assigned in Fossilworks (Supplementary Data 4). Dated nodes were widely
distributed throughout the tree and covered all major clades within Anomura. The
R package ‘paleotree’ (ref. 50) was used to scale the tree and extrapolate dates to the
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remaining nodes. To investigate the effects of subtle changes in the node dates and
the potential subsequent effect on the tree, we re-ran a complete analysis on a
number of scenarios in which the node date was shifted to a parent or child node at
random. We generated new trees moving 10, 15 and 20% of dates in this manner.
To calibrate the whole tree we chose to use the ‘equal’ method, with a minimum
branch length of 0.1Myr. Estimates of rates and models of continuous trait
evolution are sensitive to bias from the insertion of many short branch lengths51,
hence the arbitrary variable used in other methods could have a significant effect
on the diversification analyses performed subsequently.

Diversification rate shift analysis. Diversification rates were assessed via BAMM,
which uses an MCMC approach to calculate diversification rates and significant
rate shifts. Four chains were executed for the analysis, each with a total of 20
million generations executed, with a minimum clade size of five taxa used to aid
convergence. Ten thousand of the results were stored, with 1,000 discarded as
‘burn-in’, leaving 9,000 samples for subsequent analysis with regards to tempera-
ture correlation. For details of the sampling and BAMM set-up see Supplementary
Data 4 and 5. The analysis also accounted for non-complete coverage of taxa in the
tree by specifying a clade-dependent sampling bias factor derived from the
taxonomy in WoRMS29. Analyses without taking into account sampling yielded
similar results. The diversification shifts were stable across a number of possible
outcomes in the analysis with the top nine shift configurations showing the same
rate shift, albeit at different probabilities (Supplementary Fig. 2). An additional
shift may be present in Albuneidae, but this has a very low likelihood so is not
considered further here. The most probable diversification rate shifts show
remarkable consistency with regards to the branch location of each rate shift
(Supplementary Fig. 3).

Temperature correlations. Correlation of speciation rates with temperature
utilized the output from BAMM by creating a speciation rate curve for the whole
tree and for each clade that showed a significant diversification rate shift. These
were then analysed using the script included in Supplementary Data 6. The d18O
data30,31 (Supplementary Data 7) were first smoothed using a Tukey running mean
and then values linearly interpolated to the same time values available in the
speciation rate data, which occurred in 0.1Myr bins. For each of the 9,000
simulations stored from the BAMM analysis a linear correlation (Pearson’s product
moment correlation coefficient) analysis was performed and the results grouped.
Given the normal distribution obtained, a Student’s t-test was performed to assess
the significance of the mean from zero. A zero mean would indicate that the
BAMM simulations gave a non-significant correlation across the simulations.
All simulations produced significant correlation values (Po0.05), with a normal
distribution of results, and likewise all Student’s t-tests produced significant results.
However, the two time series used are autocorrelated at short lag times and hence
may produce spurious results when using Pearson’s correlation52. To investigate
the effect of this, detrended cross-correlation analysis (DCCA) was used to account
for the non-stationarity and autocorrelation52. Both analyses found the same
relationship between speciation and global temperature for all clades. All analyses
were carried out in R 3.2.2 (ref. 53) and the script used is included in
Supplementary Data 6.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary Information files.
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