79 research outputs found
Global Production of Marine Bivalves. Trends and Challenges
The global production of marine bivalves for human consumption is
more than 15 million tonnes per year (average period 2010â2015), which is about
14% of the total marine production in the world. Most of the marine bivalve production
(89%) comes from aquaculture and only 11% comes from the wild fishery.
Asia, especially China, is by far the largest producer of marine bivalves, accounting
for 85% of the world production and responsible for the production growth. In
other continents, the production is stabilizing or decreasing (Europe) the last
decades. In order to stimulate growth, sustainability (Planet, Profit, People) of the
aquaculture activities is a key issue. Environmental (Planet) aspects for sustainable
aquaculture include the fishery on seed resources, carrying capacity, invasive species
and organic loading. Food safety issues due to environmental contaminants
and biotoxines should be minimized to increase the reliability of marine bivalves
as a healthy food source and to stimulate market demands. Properly designed monitoring
programs are important tools to accomplish sustainable growth of marine
bivalve production
Metabolic compartmentalization in the human cortex and hippocampus: evidence for a cell- and region-specific localization of lactate dehydrogenase 5 and pyruvate dehydrogenase
BACKGROUND: For a long time now, glucose has been thought to be the main, if not the sole substrate for brain energy metabolism. Recent data nevertheless suggest that other molecules, such as monocarboxylates (lactate and pyruvate mainly) could be suitable substrates. Although monocarboxylates poorly cross the blood brain barrier (BBB), such substrates could replace glucose if produced locally.The two key enzymatiques systems required for the production of these monocarboxylates are lactate dehydrogenase (LDH; EC1.1.1.27) that catalyses the interconversion of lactate and pyruvate and the pyruvate dehydrogenase complex that irreversibly funnels pyruvate towards the mitochondrial TCA and oxydative phosphorylation. RESULTS: In this article, we show, with monoclonal antibodies applied to post-mortem human brain tissues, that the typically glycolytic isoenzyme of lactate dehydrogenase (LDH-5; also called LDHA or LDHM) is selectively present in astrocytes, and not in neurons, whereas pyruvate dehydrogenase (PDH) is mainly detected in neurons and barely in astrocytes. At the regional level, the distribution of the LDH-5 immunoreactive astrocytes is laminar and corresponds to regions of maximal 2-deoxyglucose uptake in the occipital cortex and hippocampus. In hippocampus, we observed that the distribution of the oxidative enzyme PDH was enriched in the neurons of the stratum pyramidale and stratum granulosum of CA1 through CA4, whereas the glycolytic enzyme LDH-5 was enriched in astrocytes of the stratum moleculare, the alveus and the white matter, revealing not only cellular, but also regional, selective distributions. The fact that LDH-5 immunoreactivity was high in astrocytes and occurred in regions where the highest uptake of 2-deoxyglucose was observed suggests that glucose uptake followed by lactate production may principally occur in these regions. CONCLUSION: These observations reveal a metabolic segregation, not only at the cellular but also at the regional level, that support the notion of metabolic compartmentalization between astrocytes and neurons, whereby lactate produced by astrocytes could be oxidized by neurons
Effects of external nutrient sources and extreme weather events on the nutrient budget of a Southern European coastal lagoon
The seasonal and annual nitrogen (N), phosphorus (P), and carbon (C) budgets of the mesotidal Ria Formosa lagoon, southern Portugal, were estimated to reveal the main inputs and outputs, the seasonal patterns, and how they may influence the ecological functioning of the system. The effects of extreme weather events such as long-lasting strong winds causing upwelling and strong rainfall were assessed. External nutrient inputs were quantified; ocean exchange was assessed in 24-h sampling campaigns, and final calculations were made using a hydrodynamic model of the lagoon. Rain and stream inputs were the main freshwater sources to the lagoon. However, wastewater treatment plant and groundwater discharges dominated nutrient input, together accounting for 98, 96, and 88 % of total C, N, and P input, respectively. Organic matter and nutrients were continuously exported to the ocean. This pattern was reversed following extreme events, such as strong winds in early summer that caused upwelling and after a period of heavy rainfall in late autumn. A principal component analysis (PCA) revealed that ammonium and organic N and C exchange were positively associated with temperature as opposed to pH and nitrate. These variables reflected mostly the benthic lagoon metabolism, whereas particulate P exchange was correlated to Chl a, indicating that this was more related to phytoplankton dynamics. The increase of stochastic events, as expected in climate change scenarios, may have strong effects on the ecological functioning of coastal lagoons, altering the C and nutrient budgets.Portuguese Science and Technology Foundation (FCT) [POCI/MAR/58427/2004, PPCDT/MAR/58427/2004]; Portuguese Science and Technology Foundation (FCT
Massive mortality of invasive bivalves as a potential resource subsidy for the adjacent terrestrial food web
Large-scale mortality of invasive bivalves
was observed in the River Danube basin in the autumn
of 2011 due to a particularly low water discharge. The
aim of this study was to quantify and compare the
biomass of invasive and native bivalve die-offs
amongst eight different sites and to assess the potential
role of invasive bivalve die-offs as a resource subsidy
for the adjacent terrestrial food web. Invasive bivalve
die-offs dominated half of the study sites and their
highest density and biomass were recorded at the
warm water effluent. The density and biomass values
recorded in this study are amongst the highest values
recorded for aquatic ecosystems and show that a
habitat affected by heated water can sustain an extremely high biomass of invasive bivalves. These
mortalities highlight invasive bivalves as a major
resource subsidy, possibly contributing remarkable
amounts of nutrients and energy to the adjacent
terrestrial ecosystem. Given the widespread occurrence
of these invasive bivalves and the predicted
increase in the frequency and intensity of extreme
climatic events, the ecological impacts generated by
their massive mortalities should be taken into account
in other geographical areas as well.The authors are grateful to David Strayer for valuable comments on a previous version of the manuscript. Special thanks to the Danube-Ipoly National Park for the help in field work. Ronaldo Sousa was supported by the project "ECOIAS" funded by the Portuguese Foundation for the Science and the Technology and COMPETE funds (contract: PTDC/AAC-AMB/116685/2010)
Pretreatment serum albumin as a predictor of cancer survival: A systematic review of the epidemiological literature
<p>Abstract</p> <p>Background</p> <p>There are several methods of assessing nutritional status in cancer of which serum albumin is one of the most commonly used. In recent years, the role of malnutrition as a predictor of survival in cancer has received considerable attention. As a result, it is reasonable to investigate whether serum albumin has utility as a prognostic indicator of cancer survival in cancer. This review summarizes all available epidemiological literature on the association between pretreatment serum albumin levels and survival in different types of cancer.</p> <p>Methods</p> <p>A systematic search of the literature using the MEDLINE database (January 1995 through June 2010) to identify epidemiologic studies on the relationship between serum albumin and cancer survival. To be included in the review, a study must have: been published in English, reported on data collected in humans with any type of cancer, had serum albumin as <it>one of the </it>or <it>only </it>predicting factor, had survival as one of the outcome measures (primary or secondary) and had any of the following study designs (case-control, cohort, cross-sectional, case-series prospective, retrospective, nested case-control, ecologic, clinical trial, meta-analysis).</p> <p>Results</p> <p>Of the 29 studies reviewed on cancers of the gastrointestinal tract, all except three found higher serum albumin levels to be associated with better survival in multivariate analysis. Of the 10 studies reviewed on lung cancer, all excepting one found higher serum albumin levels to be associated with better survival. In 6 studies reviewed on female cancers and multiple cancers each, lower levels of serum albumin were associated with poor survival. Finally, in all 8 studies reviewed on patients with other cancer sites, lower levels of serum albumin were associated with poor survival.</p> <p>Conclusions</p> <p>Pretreatment serum albumin levels provide useful prognostic significance in cancer. Accordingly, serum albumin level could be used in clinical trials to better define the baseline risk in cancer patients. A critical gap for demonstrating causality, however, is the absence of clinical trials demonstrating that raising albumin levels by means of intravenous infusion or by hyperalimentation decreases the excess risk of mortality in cancer.</p
Ecological impacts of non-native Pacific oysters (Crassostrea gigas) and management measures for protected areas in Europe
Pacific oysters are now one of the most âglobalisedâ marine invertebrates. They dominate bivalve aquaculture production in many regions and wild populations are increasingly becoming established, with potential to displace native species and modify habitats and ecosystems. While some fishing communities may benefit from wild populations, there is now a tension between the continued production of Pacific oysters and risk to biodiversity, which is of particular concern within protected sites. The issue of the Pacific oyster therefore locates at the intersection between two policy areas: one concerning the conservation of protected habitats, the other relating to livelihoods and the socio-economics of coastal aquaculture and fishing communities. To help provide an informed basis for management decisions, we first summarise evidence for ecological impacts of wild Pacific oysters in representative coastal habitats. At local scales, it is clear that establishment of Pacific oysters can significantly alter diversity, community structure and ecosystem processes, with effects varying among habitats and locations and with the density of oysters. Less evidence is available to evaluate regional-scale impacts. A range of management measures have been applied to mitigate negative impacts of wild Pacific oysters and we develop recommendations which are consistent with the scientific evidence and believe compatible with multiple interests. We conclude that all stakeholders must engage in regional decision making to help minimise negative environmental impacts, and promote sustainable industry development
Ecosystem models of bivalve aquaculture: Implications for supporting goods and services
In this paper we focus on the role of ecosystem models in improving our understanding of the complex relationships between bivalve farming and the dynamics of lower trophic levels. To this aim, we review spatially explicit models of phytoplankton impacted by bivalve grazing and discuss the results of three case studies concerning an estuary (Baie des Veys, France), a bay, (Tracadie Bay, Prince Edward Island, Canada) and an open coastal area (Adriatic Sea, Emilia-Romagna coastal area, Italy). These models are intended to provide insight for aquaculture management, but their results also shed light on the spatial distribution of phytoplankton and environmental forcings of primary production. Even though new remote sensing technologies and remotely operated in situ sensors are likely to provide relevant data for assessing some the impacts of bivalve farming at an ecosystem scale, the results here summarized indicate that ecosystem modelling will remain the main tool for assessing ecological carrying capacity and providing management scenarios in the context of global drivers, such as climate change
Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis
Extreme events such as heat waves have increased in frequency and duration over the last decades. Under future climate scenarios, these discrete climatic events are expected to become even more recurrent and severe. Heat waves are particularly important on rocky intertidal shores, one of the most thermally variable and stressful habitats on the planet. Intertidal mussels, such as the blue mussel Mytilus edulis, are ecosystem engineers of global ecological and economic importance, that occasionally suffer mass mortalities. This study investigates the potential causes and consequences of a mass mortality event of M. edulis that occurred along the French coast of the eastern English Channel in summer 2018. We used an integrative, climatological and ecophysiological methodology based on three complementary approaches. We first showed that the observed mass mortality (representing 49 to 59% of the annual commercial value of local recreational and professional fisheries combined) occurred under relatively moderate heat wave conditions. This result indicates that M. edulis body temperature is controlled by non-climatic heat sources instead of climatic heat sources, as previously reported for intertidal gastropods. Using biomimetic loggers (i.e. 'robomussels'), we identified four periods of 5 to 6 consecutive days when M. edulis body temperatures consistently reached more than 30â°C, and occasionally more than 35â°C and even more than 40â°C. We subsequently reproduced these body temperature patterns in the laboratory to infer M. edulis thermal tolerance under conditions of repeated heat stress. We found that thermal tolerance consistently decreased with the number of successive daily exposures. These results are discussed in the context of an era of global change where heat events are expected to increase in intensity and frequency, especially in the eastern English Channel where the low frequency of commercially exploitable mussels already questions both their ecological and commercial sustainability.Funding Agency
French Ministere de l'Enseignement Superieur et de la Recherche
Region Hauts-de-France
European Funds for Regional Economical Development
Pierre Hubert Curien PESSOA Felloswhip
Fundacao para a Ciencia e Tecnologia (FCT-MEC, Portugal)
IF/01413/2014/CP1217/CT0004
National Research Foundation - South Africa
64801
South African Research Chairs Initiative (SARChI) of the Department of Science and Technology
National Research Foundation - South Africainfo:eu-repo/semantics/publishedVersio
- âŠ