74 research outputs found

    Recrystallization in an Mg-Nd alloy processed by high-pressure torsion: a calorimetric analysis

    Get PDF
    Differential scanning calorimetry (DSC) was used to evaluate the recrystallization temperature and activation energy for an Mg-1.43Nd (wt.%) alloy after severe plastic deformation by high-pressure torsion (HPT) at room temperature up to 10 turns. The recrystallization kinetics were determined from DSC analysis. The results show that the recrystallization temperature increases with increasing heating rate and decreases with increasing numbers of HPT turns. Severe plastic deformation by HPT significantly reduces the recrystallization temperature. The estimated activation energy for recrystallization was in the range of ~ 84-89 kJ mol-1

    On the groove pressing of Ni-W alloy: microstructure, texture and mechanical properties evolution

    Get PDF
    International audienceThe microstructure, texture and mechanical properties of the Ni-14%W(wt.%) alloy with two different initial grain sizes and textures were investigated after groove pressing (GP) at 450 °C to 4 cycles using Electron Back Scatter Diffraction (EBSD) and microhardness measurements. The initial first series was characterized by small equiaxed grains and Cube dominant texture component. The second series has elongated grains and β-fiber texture. EBSD analysis has shown that GP processing led to a slight refinement (less than 15%) of equiaxed grains in series I while greater refinement (~55%) of the mean spacing along normal direction was observed in series II. The texture did not drastically change from the initial ones and was characterized by the weakening of the Cube component in series I and rapid decrease of Copper component for series II. GP processing reduces very slightly the plastic anisotropy of the alloy with initial elongated granular microstructure

    Cr cluster characterization in Cu-Cr-Zr alloy after ECAP processing and aging using SANS and HAADF-STEM

    Get PDF
    International audienceThe precipitation of nano-sized Cr clusters was investigated in a commercial Cu-1Cr-0.1Zr (wt.%) alloy processed by Equal-Channel Angular Pressing (ECAP) and subsequent aging at 550 °C for 4 hours using small angle neutron scattering (SANS) measurements and high-angle annular dark-field-scanning transmission electron microscopy (HAADF-STEM). The size and volume fraction of nano-sized Cr clusters were estimated using both techniques. These parameters assessed from SANS (d~3.2 nm, Fv~1.1 %) agreed reasonably with those from HAADF-STEM (d ~2.5 nm, Fv~2.3%). Besides nano-sized Cr clusters, HAADF-STEM technique evidenced the presence of rare cuboid and spheroid sub-micronic Cr particles about 380-620 nm mean size. Both techniques did not evidence the presence of intermetallic CuxZry phases within the aging conditions

    On some Features of the Grain and Subgrain Size in a Cu-Cr-Zr Alloy After ECAP Processing and Aging

    Get PDF
    A Cu-1Cr-0.1Zr alloy has been subjected to ECAP processing via route Bc and aging at 250-800°C. Electron BackScatter diffraction (EBSD), Transmission Electron Microscopy (TEM) and X-Ray Diffraction Line Profile Analysis (XRDLPA) techniques have been used to unveil some peculiarities of the grain and subgrain structure with a special emphasis on the comparison of the grain size estimated by the three techniques. For the alloy ECAP processed and aged up to 16 passes, the grain size (from EBSD, 0.2 < d < 5 μm), subgrain size (from TEM, d ~ 0.75 μm) and “apparent” average crystallite size (from XRDLPA, d < 0.25 μm) are manifestly different. The results were compared to the published data and analyzed based on the fundamental aspects of these techniques

    The threat of the COVID-19 pandemic on reversing global life-saving gains in the survival of childhood cancer: A call for collaborative action from SIOP, IPSO, PROS, WCC, CCI, st jude global, UICC and WHPCA

    Get PDF
    The COVID-19 pandemic poses an unprecedented health crisis in all socio-economic regions across the globe. While the pandemic has had a profound impact on access to and delivery of health care by all services, it has been particularly disruptive for the care of patients with life-threatening noncommunicable diseases (NCDs) such as the treatment of children and young people with cancer. The reduction in child mortality from preventable causes over the last 50 years has seen childhood cancer emerge as a major unmet health care need. Whilst survival rates of 85% have been achieved in high income countries, this has not yet been translated into similar outcomes for children with cancer in resource-limited settings where survival averages 30%. Launched in 2018, by the World Health Organization (WHO), the Global Initiative for Childhood Cancer (GICC) is a pivotal effort by the international community to achieve at least 60% survival for children with cancer by 2030. The WHO GICC is already making an impact in many countries but the disruption of cancer care during the COVID-19 pandemic threatens to set back this global effort to improve the outcome for children with cancer, wherever they may live. As representatives of the global community committed to fostering the goals of the GICC, we applaud the WHO response to the COVID-19 pandemic, in particular we support the WHO's call to ensure the needs of patients with life threatening NCDs including cancer are not compromised during the pandemic. Here, as collaborative partners in the GICC, we highlight specific areas of focus that need to be addressed to ensure the immediate care of children and adolescents with cancer is not disrupted during the pandemic; and measures to sustain the development of cancer care so the long-term goals of the GICC are not lost during this global health crisis.Fil: Pritchard Jones, Kathy. University College London; Estados UnidosFil: de Abib, Simone C.V.. International Society Of Paediatric Surgical Oncology; Surinam. Universidade Federal de Sao Paulo; BrasilFil: Esiashvili, Natia. University of Emory; Estados UnidosFil: Kaspers, Gertjan J.L.. Princess Máxima Center for Pediatric Oncology; Países BajosFil: Rosser, Jon. No especifíca;Fil: van Doorninck, John A.. Rocky Mountain Hospital for Children; Estados UnidosFil: Braganca, João M.L.. No especifíca;Fil: Hoffman, Ruth I.. No especifíca;Fil: Rodriguez Galindo, Carlos. St Jude Children’s Research Hospital; Estados UnidosFil: Adams, Cary. Union for International Cancer Control; SuizaFil: Connor, Stephen R.. Worldwide Hospice Palliative Care Alliance; Estados UnidosFil: Abdelhafeez, Abdelhafeez H.. International Society of Paediatric Surgical Oncology; Suiza. St. Jude Children’s Research Hospital; Estados UnidosFil: Bouffet, Eric. University Of Toronto. Hospital For Sick Children; Canadá. International Society of Paediatric Surgical Oncology; SuizaFil: Howard, Scott C.. International Society of Paediatric Surgical Oncology; Suiza. University of Tennessee; Estados UnidosFil: Challinor, Julia M.. International Society of Paediatric Surgical Oncology; Suiza. University of California; Estados UnidosFil: Hessissen, Laila. Children Hospital of Rabat; Marruecos. International Society of Paediatric Surgical Oncology; SuizaFil: Dalvi, Rashmi B.. Bombay Hospital Institute of Medical Sciences; India. International Society of Paediatric Surgical Oncology; SuizaFil: Kearns, Pamela. International Society of Paediatric Surgical Oncology; SuizaFil: Chantada, Guillermo Luis. International Society of Paediatric Surgical Oncology; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Frazier, Lindsay A.. International Society of Paediatric Surgical Oncology; Suiza. Dana-Farber Cancer Institute; Estados UnidosFil: Sullivan, Michael J.. University of Melbourne; Australia. International Society of Paediatric Surgical Oncology; SuizaFil: Schulte, Fiona S.M.. University of Calgary; Canadá. International Society of Paediatric Surgical Oncology; SuizaFil: Morrissey, Lisa K.. Boston Children’s Hospital; Estados Unidos. International Society of Paediatric Surgical Oncology; SuizaFil: Kozhaeva, Olga. European Society for Paediatric Oncology; BélgicaFil: Luna Fineman, Sandra. Children’s Hospital Colorado; Estados Unidos. International Society of Paediatric Oncology; SuizaFil: Khan, Muhammad S.. Tawam Hospital; Emiratos Arabes Unido

    Average bioequivalence of single 500 mg doses of two oral formulations of levofloxacin: a randomized, open-label, two-period crossover study in healthy adult Brazilian volunteers

    Get PDF
    Average bioequivalence of two 500 mg levofloxacin formulations available in Brazil, Tavanic(c) (Sanofi-Aventis Farmacêutica Ltda, Brazil, reference product) and Levaquin(c) (Janssen-Cilag Farmacêutica Ltda, Brazil, test product) was evaluated by means of a randomized, open-label, 2-way crossover study performed in 26 healthy Brazilian volunteers under fasting conditions. A single dose of 500 mg levofloxacin tablets was orally administered, and blood samples were collected over a period of 48 hours. Levofloxacin plasmatic concentrations were determined using a validated HPLC method. Pharmacokinetic parameters Cmax, Tmax, Kel, T1/2el, AUC0-t and AUC0-inf were calculated using noncompartmental analysis. Bioequivalence was determined by calculating 90% confidence intervals (90% CI) for the ratio of Cmax, AUC0-t and AUC0-inf values for test and reference products, using logarithmic transformed data. Tolerability was assessed by monitoring vital signs and laboratory analysis results, by subject interviews and by spontaneous report of adverse events. 90% CIs for Cmax, AUC0-t and AUC0-inf were 92.1% - 108.2%, 90.7% - 98.0%, and 94.8% - 100.0%, respectively. Observed adverse events were nausea and headache. It was concluded that Tavanic(c) and Levaquin(c) are bioequivalent, since 90% CIs are within the 80% - 125% interval proposed by regulatory agencies

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Twelve-month observational study of children with cancer in 41 countries during the COVID-19 pandemic

    Get PDF
    Introduction Childhood cancer is a leading cause of death. It is unclear whether the COVID-19 pandemic has impacted childhood cancer mortality. In this study, we aimed to establish all-cause mortality rates for childhood cancers during the COVID-19 pandemic and determine the factors associated with mortality. Methods Prospective cohort study in 109 institutions in 41 countries. Inclusion criteria: children &lt;18 years who were newly diagnosed with or undergoing active treatment for acute lymphoblastic leukaemia, non-Hodgkin's lymphoma, Hodgkin lymphoma, retinoblastoma, Wilms tumour, glioma, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, medulloblastoma and neuroblastoma. Of 2327 cases, 2118 patients were included in the study. The primary outcome measure was all-cause mortality at 30 days, 90 days and 12 months. Results All-cause mortality was 3.4% (n=71/2084) at 30-day follow-up, 5.7% (n=113/1969) at 90-day follow-up and 13.0% (n=206/1581) at 12-month follow-up. The median time from diagnosis to multidisciplinary team (MDT) plan was longest in low-income countries (7 days, IQR 3-11). Multivariable analysis revealed several factors associated with 12-month mortality, including low-income (OR 6.99 (95% CI 2.49 to 19.68); p&lt;0.001), lower middle income (OR 3.32 (95% CI 1.96 to 5.61); p&lt;0.001) and upper middle income (OR 3.49 (95% CI 2.02 to 6.03); p&lt;0.001) country status and chemotherapy (OR 0.55 (95% CI 0.36 to 0.86); p=0.008) and immunotherapy (OR 0.27 (95% CI 0.08 to 0.91); p=0.035) within 30 days from MDT plan. Multivariable analysis revealed laboratory-confirmed SARS-CoV-2 infection (OR 5.33 (95% CI 1.19 to 23.84); p=0.029) was associated with 30-day mortality. Conclusions Children with cancer are more likely to die within 30 days if infected with SARS-CoV-2. However, timely treatment reduced odds of death. This report provides crucial information to balance the benefits of providing anticancer therapy against the risks of SARS-CoV-2 infection in children with cancer
    corecore