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of independent slip systems. Several strategies have been pro-
posed to overcome this deficiency. Recent work [3-7] showed
that a modification of the chemical composition of Mg alloys
with special emphasis on the addition of rare earth (RE) ele-
ments may potentially improve the plastic formability. Thus,
RE elements may change the deformation mechanisms dur-
ing plastic deformation by introducing solute drag and thereby
changing the relative boundary mobility [8] and/or by enhanc-
ing the activation of hard systems such as <c + a> pyramidal
slip [9-11]. In addition, Mg-RE precipitates tend to inhibit grain
growth during hot working or annealing and ensure good ther-
mal stability of the refined microstructures [12].

1. Introduction

Magnesium and its alloys have increasingly attracted scien-
tific investigations because of potential applications in the
aerospace and transportation industries due to their high
specific strength and attractive environmental characteris-
tics [1,2]. Nevertheless, magnesium alloys suffer from poor
formability at low temperatures because of their hexagonal
crystallography and the consequent lack of sufficient numbers
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Severe plastic deformation (SPD) techniques, such as
equal-channel angular pressing (ECAP) [13] and high-pressure
torsion (HPT) [14], were found to significantly enhance the
room temperature ductility of a range of magnesium alloys
[15-18] and in practice SPD techniques have the potential
of producing ultra-fine grained (UFG) materials and alloys
characterized by excellent mechanical and physical proper-
ties such as high yield strength and superplasticity. These
enhanced properties are due to a combination of the UFG
microstructure and the introduction of considerable amounts
of defects. Nevertheless, the processing of Mg alloys by ECAP
is generally restricted to relatively high temperatures [19,20]
in order to avoid billet cracking and the segmentation along
the gauge section that is often observed after ECAP at room
temperature. By contrast, processing by HPT prevents the
development of segmentation and cracking due to the large
imposed hydrostatic pressure [21] and this provides an oppor-
tunity for producing a UFG structure, even in pure magnesium,
by processing using HPT at room temperature (RT) [22]. Pro-
cessing by HPT also has an advantage over ECAP because
it leads to both a more refined microstructure [23,24] and a
higher fraction of grain boundaries having high angles of mis-
orientation [25].

Post-deformation annealing (PDA) treatments of UFG mate-
rials are often used in order to attain a reasonably stable state
by recovery and recrystallization [26,27] and therefore it is
important to investigate the thermal stability of UFG materi-
als. The recrystallization of Mg-based alloys after conventional
deformation processing has been widely investigated [28-32].
However, there are only limited reports of PDA after SPD pro-
cessing at elevated temperatures [33] and the role of PDA
after processing of Mg alloys at RT appears to be restricted
to samples that were heavily cold worked but not subjected
to new SPD processing [34]. Accordingly, the present inves-
tigation was initiated in order to evaluate, using differential
scanning calorimetry (DSC), the recrystallization temperature
and the kinetics as well as the activation energy in a Mg-
1.43Nd (wt.%) alloy after processing by HPT at RT for up to
10 turns.

2. Methods

The material used in this investigation was Mg-1.43Nd (wt.%)
with the alloy provided in an as-cast state by the Institut
fiir Metallkunde und Metallphysik (IMM, RWTH), Aachen, Ger-
many.

Discs with thicknesses of 1.5 mm and diameters of 10mm
were partially solutioned in sealed glass tubes by holding at
535°C for 5h and then carefully polishing to final thicknesses
of ~0.85 mm. The HPT processing was conducted at RT using
a rotational speed of 1rpm and quasi-constrained conditions
[35,36] for 1/2, 1, 5 and 10 turns using an imposed pressure of
6.0 GPa.

Small samples of 18-20mg and with a diameter of 5mm
were cut near the centers of the HPT discs in order to per-
form a DSC analysis using a 2920 MDSC calorimeter under
constant heating rates of 10, 20, 30 and 40 °C/min in a nitrogen
atmosphere. The DSC scanning temperature ranged from 80
to 500°C
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Fig. 1 - DSC curves of Mg-1.43Nd processed by HPT after 2,
1, 5 and 10 turns, scanned at a heating rate of 20 °G/min.

3. Results

Fig. 1 presents the DSC thermograms of the Mg-1.43Nd alloy
subjected to 1/2, 1, 5 and 10 HPT turns obtained by continuous
heating with a 20°C/min rate. Other scans corresponding to
5, 10 and 30°C/min are not included in this report since they
exhibit almost identical trends. All of the thermograms show
five exothermic peaks which are labeled in Fig. 1 as Rex, B,
B1, B and Be and two endothermic peaks labeled D1 and Dj.
The first exothermic peak around 180°C corresponds to the
recrystallization event. Observations of this type of precipi-
tation sequence are generally in good agreement with those
described earlier [37,38|. The results of an investigation of
the sequence and a quantitative analysis of the precipitation
processes in the Mg-1.43Nd alloy after HPT processing were
published in an earlier report [39].

Fig. 2 and 3 show the DSC scans of the recrystallization
peaks and the corresponding values of the temperature peaks
of recrystallization as a function of the numbers of HPT turns
for heating rates of 5, 10, 20 and 30°C/min, respectively. It is
clear from these data that the peak temperature of the recrys-
tallization phenomena increases with increasing heating rate
and decreases with increasing numbers of HPT turn. The
present results show that the recrystallization temperature
is in the range of 138-175°C. The presence of an exother-
mic peak below 200 °C belonging to the recrystallization was
already reported in Mg-1.44Ce (wt.%) [40] and Mg-0.41Dy (wt.%)
alloys [41] after HPT processing at RT up to 10 and 5 turns,
respectively.

In order to evaluate the activation energy for recrystalliza-
tion, the Boswell-Kissinger method was used based on the DSC
measurements according to the following equation [42]:

\% E
In—=C- — (1)
T, RT,

where V is the heating rate, E is the activation energy, Ty is
the maximum temperature of the peak, R is the universal gas
constant and C is a constant.
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Fig. 2 - DSC scans of the recrystallization peak at a heating rate of 5, 10, 20 and 30 °G/min in Mg-1.43Nd alloy processed by

HPT for up to 10 turns.
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Fig. 3 - Evolution of the temperature peak of
recrystallization of Mg-1.43Nd as function of number of
HPT turns.

In order to make use of Eq. (1), Fig.4 shows the evolution of
In(V/Tp) as a function of (1000/T, K~1) for the recrystallization
peaks measured by DSC using the four heating rates of 5, 10,
20 and 30°C/min after processing the alloy by HPT for up to
10 turns. It is evident that this Boswell-Kissinger plot shows
straight lines and the activation energy can be determined
directly from the slope of the plot. Thus, the values deduced for
the activation energy for recrystallization are given in Fig. 5 as
functions of the numbers of HPT turns. Itis readily evident that
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Fig. 4 - Boswell plots for Mg-1.43Nd deformed by HPT up to
10 turns for recrystallization peak.

the activation energy decreases significantly between 1/2 and
1 HPT turn but thereafter it only gradually decreases between
1 and 10 turns. With a maximum error of ATp ~2°K and AV
~0.5°K/min, the relative error of the activation energy deduced
from (eq.1) amounts roughly to AE/E<10 %.

The kinetics of recrystallization can be determined during
the DSC analysis using the following relationship [43]:

Fy=— 2
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Fig. 5 - Evolution of activation energy of recrystallization of
Mg-1.43Nd alloy as function of HPT turns.

where Fu is the recrystallized volume fraction, A is the total
area of the exothermic peak and Ar is the area between the
onset peak and the chosen temperature T, respectively.

Fig. 6 (a—d) shows the recrystallized volume fraction of the
Mg-1.43Nd alloy after HPT processing to 1/2, 1, 5 and 10 turns
calculated from the DSC analysis at the different heating rates
of 5 (a), 10 (b), 20 (c) and 30 °C/min (d). Thus, sigmoidal-shaped
curves are obtained and there is a clear shift in the recrystal-
lized fraction to lower temperatures with an increase in the
imposed strain introduced by the HPT processing. There is
also a clear shift of the curves to higher temperature with
increasing heating rate.

4, Discussion

Based on these experimental results, it is possible to ratio-
nalize the overall decomposition sequence in the Mg-1.43Nd
alloy. It is clear that after the HPT processing of this alloy the
recrystallization phenomenon is concomitant with a complex
sequence of precipitation reactions. Nevertheless, for all of
the samples the DSC analysis exhibits a five-stage precipi-
tation sequence and this is generally in agreement with the
sequences proposed in some earlier reports [37,38].

Based on an extensive review of the recrystallization of
duplex alloys, it appears that the present observations obey
Regime III following the scheme proposed in this earlier review
[44]. During regime III, the recrystallization becomes complete
before the occurrence of significant precipitation and thus it
appears to be influenced only by solute segregation so that
precipitation subsequently occurs in the recrystallized mate-
rial. The use of HPT processing on the Mg-1.43Nd alloy at
RT does not seem to significantly affect this sequence. How-
ever as shown in Fig. 3, the recrystallization temperature was
lowered considerably (138-175 °C) in the current investigation
relative to conventional plastic deformation. It was reported
that among Mg-RE alloys the Mg-Nd exhibits the highest
onset temperature of recrystallization [45]. As an example,
for a cold-rolled Mg-2.65Nd (wt. %) alloy the recrystallization
temperature was about 300 °C and it is believed that the recrys-

tallization temperature is strongly affected by simultaneous
precipitation during the recrystallization process [30,31,45].
By contrast, the present results show that the severe plastic
deformation introduced by HPT considerably influences the
recrystallization temperature in the absence of any simultane-
ous precipitation. It was reported in the Mg-1.44Ce (wt%) alloy
after HPT processing up to 10 turns that the recrystallization
peak temperature was considerably reduced within the range
of ~135-177.1°C [40]. It was found also in the Mg-0.41Dy (wt.%)
alloy processed by HPT up to 5 turns that the recrystallization
process was completed within the range of ~120-200°C [41]
and the recrystallization temperature increased with increas-
ing heating rate.

The activation energies for recrystallization derived from
the present investigation ranges from ~84 to ~89kJ mol~?! for
10 and 1/2 turn of HPT, respectively. It is noted that the activa-
tion energy for dislocation release is not dependent upon the
strain value, at least for shear strains y < 15 [46], but HPT pro-
cessing is known to result in a very strong equivalent strain of
more than 200 after 10 turns. It is apparent that the activation
energy is lower than the value for self-diffusion in magnesium
(~135k)mol~?) and slightly lower than the value for bound-
ary self-diffusion (~92kJmol~1) [47]. Close values of ~72 to
~87kJ mol~! were reported in Mg-Ce alloy processed by HPT
at RT [40]. The activation energies of the recrystallization were
around ~86kJmol~! in a heavily cold-drawn and annealed
AZ31 alloy [34]. Furthermore, there is a report of a similar value
of ~69-88kJmol~? [48] in twin-roll cast (TRC) AZ31 magne-
sium alloy and the activation energy for recrystallization in an
Mg-0.42Nd (wt.%) alloy was ~120kJ mol~? [49]. Thus, the lower
values of the activation energy for recrystallization obtained
after SPD processing is probably associated with the high
density of nucleation sites compared with conventional defor-
mation, including the presence of high-angle grain boundaries
and a high concentration of both single/double vacancies
and/or vacancy agglomerates [46,50]. Moreover, there is a con-
siderable increase in the density of vacancies during the SPD
processing and this substantial increase may be partly due
to the special conditions associated with the SPD process-
ing. Both dynamic and static recovery and/or recrystallization
processes were recently reported during and after SPD [51].
Furthermore, besides lowering the recrystallization tempera-
ture and activation energy, it is evident from Fig. 6 that there is
a shift in the recrystallized volume fraction, Fu, to lower tem-
peratures upon increasing the strain by HPT. Unfortunately,
at present very little information is available on the nature of
the static continuous recrystallization (SRX) kinetics and grain
growth in Mg-based alloys in general and especially in Mg-RE
alloys [28,30].

It is now well established that dynamic recrystallization
(DRX) is commonly observed during conventional hot defor-
mation of magnesium and its alloys [52]. Specifically, DRX
in magnesium alloys has been the focus of several studies
[53-55]. A model was built for simulating static recrystal-
lization processes that incorporates local effects such as
the misorientations between elements and variations in the
stored energy [56]. The experimental results obtained in plane
strain compression of zinc samples were generally in good
agreement with the simulated recrystallization kinetics [56]
and both the experimental results and the predictions were
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Fig. 6 - Recrystallized fraction for Mg-1.43Nd alloy after HPT processing up to /2, 1, 5 and 10 turns at 5 and 10 turns at

different heating rates: a) 5, b) 10, c) 20 and d) 30 °G/min.

Table 1 - Onset peak (Ty), offset peak (Tax),
recrystallization temperatures (T,.x) and stored energy

(E) obtained from the DSC curves at heating rate of
5°C/min for Mg-1.43Nd alloy after HPT processing up to
15,1, 5 and 10 turns.

HPT turn To (°C) Tax (°C) Trex (°C) E (/g)
1/2 114.2 166.1 144.6 1.64
1 119.0 169.0 142.8 1.95
5 1213 158.0 140.6 1.72
10 121.8 158.1 138.9 1.33

consistent with a mechanism whereby nucleation occurs in
highly-deformed domains and controls the recrystallization
kinetics.

The values of the onset peak (Tp), the offset peak (Tmax),
the recrystallization temperature (Trex) and the stored energy
obtained from the DSC curves at heating rates of 5 °C.min " for
the Mg-1.43Nd alloy after HPT processing up to 1/2, 1, 5 and 10
turns are documented in Table 1.The recrystallization temper-
ature is conventionally defined as the temperature at which
the material is 50 % recrystallized [57]. The stored energy, E,
released during recrystallization in the DSC experiments cor-
responds to the area under the recrystallization peak in Fig. 2.
There is an obvious shift of the recrystallization temperature
to lower temperatures in Fig. 2 and 3 with increasing num-
bers of HPT turns. It is also apparent that the stored energy
increases from 1/2 to 1 HPT turn and then decreases between
1and 10 HPT turns. Such evolution of the stored energy versus
strain is consistent with other observations where high purity

copper and a ZK60 alloy were subjected to 4 and 8 passes of
ECAP, respectively [58,59].

Based on the data presented in Fig. 5 and Table 1, the
Mg-1.43Nd alloy exhibits a higher activation energy for recrys-
tallization and lower stored energy after the early stage of
HPT at 1/2 turn. Therefore, the recrystallization process is
less impeded upon increasing the strain level by the introduc-
tion of large amounts of defects and recrystallization sites.
In Table 1, it is apparent also that there is an unusual evolu-
tion of the stored energy versus the strain level. Thus, there is
an obvious shift of the recrystallization temperature to lower
temperatures with increasing numbers of HPT turns. Typically,
published data reveal a gradual increment of the stored energy
up to a certain strain level, and thereafter the stored energy
appears to level off to a reasonably saturated value [39,60-62].
The stored energy introduced by SPD is known to increase
the driving force for nucleation of new strain-free grains so
that nucleation is then achieved at lower temperatures and
therefore the activation energy of recrystallization is reduced
[63]. Nevertheless, in the material used in this investigation
it appears that a mechanism for the formation of new grains
through dynamic recrystallization, which thereby decreases
the overall stored energy, is the key to attaining a full under-
standing of the observed behavior.

It is interesting to note that such behavior was already
reported in a ZK60 alloy processed by ECAP for up to 4 passes
at 250°C [64]. It is reasonable to anticipate that HPT processing
atroom temperature may effectively cause dynamic recrystal-
lization since it introduces far more defects than processing
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by ECAP even at warm temperatures and equivalent strains
[65]. The proportion of high-angle grain boundaries (HAGBS)
increases as recrystallization occurs and this latter is related
to the formation and migration of HAGBs driven by the stored
energy [64,66]. In order to more fully confirm these sugges-
tions, it will be necessary to conduct a systematic analysis of
the microstructural evolution using an EBSD technique.

5. Conclusions

1 High pressure torsion (HPT) was applied to an Mg-
1.43Nd alloy up to 10 turns at room temperature and the
recrystallization temperatures and activation energies for
recrystallization were estimated using differential scanning
calorimetry.

2 The results show that the recrystallization phenomenon
follows a complex sequence of precipitation reactions.
The recrystallization temperature increases with increasing
heating rate and decreases with increasing numbers of HPT
turns. The activation energy for recrystallization is in the
range from ~84 to 89 kJ mol~! and decreases with increasing
turns.

3 It is shown that processing by severe plastic deformation
using HPT lowers the recrystallization temperature and
leads to a decreasing stored energy with increasing turns.
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