487 research outputs found

    Pneumococcal Serotypes Colonise the Nasopharynx in Children at Different Densities.

    Get PDF
    Prevalence of pneumococcal serotypes in carriage and disease has been described but absolute serotype colonisation densities have not been reported. 515 paediatric nasal swab DNA extracts were subjected to lytA qPCR and molecular serotyping by microarray. Absolute serotype densities were derived from total pneumococcal density (qPCR cycle threshold and standard curve) and relative abundance (microarray) and varied widely. Compared to all serotype densities observed, the strongest evidence of differences was seen for serotypes 21 and 35B (higher) and 3, 38 and non-typeables (lower) (p<0.05) with a similar hierarchy when only a single serotype carriage was assessed. There was no evidence of any overall density differences between children with single or multiple serotypes detected but serotypes with mid-range densities were more prevalent. The hierarchy of distinct pneumococcal serotype carriage densities described here for the first time, may help explain the dynamics of transmission between children

    Recognising and reacting to angry and happy facial expressions: a diffusion model analysis.

    Get PDF
    Researchers have reported two biases in how people recognise and respond to angry and happy facial expressions: (1) a gender-expression bias (Becker et al. in J Pers Soc Psychol, 92(2):179-190, https://doi.org/10.1037/0022-3514.92.2.179 , 2007)-faster identification of male faces as angry and female faces as happy and (2) an approach-avoidance bias-faster avoidance of people who appear angry and faster approach responses people who appear happy (Heuer et al. in Behav Res The, 45(12):2990-3001, https://doi.org/10.1016/j.brat.2007.08.010 2007; Marsh et al. in Emotion, 5(1), 119-124, https://doi.org/10.1037/1528-3542.5.1.119 , 2005; Rotteveel and Phaf in Emotion 4(2):156-172, https://doi.org/10.1037/1528-3542.4.2.156 , 2004). The aim of the current research is to gain insight into the nature of such biases by applying the drift diffusion model to the results of an approach-avoidance task. Sixty-five participants (33 female) identified faces as either happy or angry by pushing and pulling a joystick. In agreement with the original study of this effect (Solarz 1960) there were clear participant gender differences-both the approach avoidance and gender-expression biases were larger in magnitude for female compared to male participants. The diffusion model results extend recent research (Krypotos et al. in Cogn Emot 29(8):1424-1444, https://doi.org/10.1080/02699931.2014.985635 , 2015) by indicating that the gender-expression and approach-avoidance biases are mediated by separate cognitive processes

    Analysis of Rare, Exonic Variation amongst Subjects with Autism Spectrum Disorders and Population Controls

    Get PDF
    We report on results from whole-exome sequencing (WES) of 1,039 subjects diagnosed with autism spectrum disorders (ASD) and 870 controls selected from the NIMH repository to be of similar ancestry to cases. The WES data came from two centers using different methods to produce sequence and to call variants from it. Therefore, an initial goal was to ensure the distribution of rare variation was similar for data from different centers. This proved straightforward by filtering called variants by fraction of missing data, read depth, and balance of alternative to reference reads. Results were evaluated using seven samples sequenced at both centers and by results from the association study. Next we addressed how the data and/or results from the centers should be combined. Gene-based analyses of association was an obvious choice, but should statistics for association be combined across centers (meta-analysis) or should data be combined and then analyzed (mega-analysis)? Because of the nature of many gene-based tests, we showed by theory and simulations that mega-analysis has better power than meta-analysis. Finally, before analyzing the data for association, we explored the impact of population structure on rare variant analysis in these data. Like other recent studies, we found evidence that population structure can confound case-control studies by the clustering of rare variants in ancestry space; yet, unlike some recent studies, for these data we found that principal component-based analyses were sufficient to control for ancestry and produce test statistics with appropriate distributions. After using a variety of gene-based tests and both meta- and mega-analysis, we found no new risk genes for ASD in this sample. Our results suggest that standard gene-based tests will require much larger samples of cases and controls before being effective for gene discovery, even for a disorder like ASD. © 2013 Liu et al

    Interplay between estrogen receptor and AKT in estradiol-induced alternative splicing.

    Get PDF
    BACKGROUND: Alternative splicing is critical for generating complex proteomes in response to extracellular signals. Nuclear receptors including estrogen receptor alpha (ERα) and their ligands promote alternative splicing. The endogenous targets of ERα:estradiol (E2)-mediated alternative splicing and the influence of extracellular kinases that phosphorylate ERα on E2-induced splicing are unknown. METHODS: MCF-7 and its anti-estrogen derivatives were used for the majority of the assays. CD44 mini gene was used to measure the effect of E2 and AKT on alternative splicing. ExonHit array analysis was performed to identify E2 and AKT-regulated endogenous alternatively spliced apoptosis-related genes. Quantitative reverse transcription polymerase chain reaction was performed to verify alternative splicing. ERα binding to alternatively spliced genes was verified by chromatin immunoprecipitation assay. Bromodeoxyuridine incorporation-ELISA and Annexin V labeling assays were done to measure cell proliferation and apoptosis, respectively. RESULTS: We identified the targets of E2-induced alternative splicing and deconstructed some of the mechanisms surrounding E2-induced splicing by combining splice array with ERα cistrome and gene expression array. E2-induced alternatively spliced genes fall into at least two subgroups: coupled to E2-regulated transcription and ERα binding to the gene without an effect on rate of transcription. Further, AKT, which phosphorylates both ERα and splicing factors, influenced ERα:E2 dependent splicing in a gene-specific manner. Genes that are alternatively spliced include FAS/CD95, FGFR2, and AXIN-1. E2 increased the expression of FGFR2 C1 isoform but reduced C3 isoform at mRNA level. E2-induced alternative splicing of FAS and FGFR2 in MCF-7 cells correlated with resistance to FAS activation-induced apoptosis and response to keratinocyte growth factor (KGF), respectively. Resistance of MCF-7 breast cancer cells to the anti-estrogen tamoxifen was associated with ERα-dependent overexpression of FGFR2, whereas resistance to fulvestrant was associated with ERα-dependent isoform switching, which correlated with altered response to KGF. CONCLUSION: E2 may partly alter cellular proteome through alternative splicing uncoupled to its effects on transcription initiation and aberration in E2-induced alternative splicing events may influence response to anti-estrogens.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Loss-of-function mutations in SLC30A8 protect against type 2 diabetes.

    Get PDF
    Neðst á síðunni er hægt að nálgast greinina í heild sinni með því að smella á hlekkinn View/OpenLoss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of ~150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8) and harbors a common variant (p.Trp325Arg) associated with T2D risk and glucose and proinsulin levels. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 × 10(-6)), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34Serfs*50) demonstrated reduced glucose levels (-0.17 s.d., P = 4.6 × 10(-4)). The two most common protein-truncating variants (p.Arg138* and p.Lys34Serfs*50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk, and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts. In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention.US National Institutes of Health (NIH) Training 5-T32-GM007748-33 Doris Duke Charitable Foundation 2006087 Fulbright Diabetes UK Fellowship BDA 11/0004348 Broad Institute from Pfizer, Inc. NIH U01 DK085501 U01 DK085524 U01 DK085545 U01 DK085584 Swedish Research Council Dnr 521-2010-3490 Dnr 349-2006-237 European Research Council (ERC) GENETARGET T2D GA269045 ENGAGE 2007-201413 CEED3 2008-223211 Sigrid Juselius Foundation Folkh lsan Research Foundation ERC AdG 293574 Research Council of Norway 197064/V50 KG Jebsen Foundation University of Bergen Western Norway Health Authority Lundbeck Foundation Novo Nordisk Foundation Wellcome Trust WT098017 WT064890 WT090532 WT090367 WT098381 Uppsala University Swedish Research Council and the Swedish Heart- Lung Foundation Academy of Finland 124243 102318 123885 139635 Finnish Heart Foundation Finnish Diabetes Foundation, Tekes 1510/31/06 Commission of the European Community HEALTH-F2-2007-201681 Ministry of Education and Culture of Finland European Commission Framework Programme 6 Integrated Project LSHM-CT-2004-005272 City of Kuopio and Social Insurance Institution of Finland Finnish Foundation for Cardiovascular Disease NIH/NIDDK U01-DK085545 National Heart, Lung, and Blood Institute (NHLBI) National Institute on Minority Health and Health Disparities N01 HC-95170 N01 HC-95171 N01 HC-95172 European Union Seventh Framework Programme, DIAPREPP Swedish Child Diabetes Foundation (Barndiabetesfonden) 5U01DK085526 DK088389 U54HG003067 R01DK072193 R01DK062370 Z01HG000024info:eu-repo/grantAgreement/EC/FP7/20201

    Fuel mobility dynamics and their influence on applied smouldering systems

    Get PDF
    Many recent environmentally beneficial applications of smouldering treat hazardous organic liquid fuels in inert porous media. In these applications, organic liquid mobilization can affect the treatment process, and the dynamics are poorly understood. Organic liquid mobilization is therefore a key knowledge gap that hinders the optimization of applied smouldering. This is especially the case in large scales where mobilization appears to be more significant. Liquid mobilization inside a porous medium cannot be easily measured directly, therefore numerical modelling is essential to understand the fundamental processes and to clarify the effects and dynamics of the fuel mobilization on the smouldering reaction. Contrasting numerical models with experimental temperature measurements have revealed many aspects of smouldering that cannot be measured. In this study, a previously developed 1D smouldering model was equipped with multiphase flow equations and compared against laboratory column experiments. The combination of model and experiments has served to quantify the dynamics of organic liquid fuel mobility by simulating high (i.e., non-mobile) and low (i.e., mobile) viscous fuels. The findings from this study shed light on the complicated interplay between multiphase flow, heat and mass transfer, and smoulder chemistry common to many applied smouldering systems. Numerical results confirmed that increasing the viscosity results in fuel remaining in the reaction zone and led to an increase in the peak temperature and smouldering front velocities. Lower viscosity fuels mobilized away from the reaction zone, thereby accumulating fuel in the pre-heating zone of the reactor. The fundamental understanding generated from this research will improve the design, implementation, and optimization of smouldering-based technologies for environmentally beneficial applications worldwide

    Multiple effects of toxins isolated from Crotalus durissus terrificus on the hepatitis C virus life cycle

    Get PDF
    Hepatitis C virus (HCV) is one of the main causes of liver disease and transplantation worldwide. Current therapy is expensive, presents additional side effects and viral resistance has been described. Therefore, studies for developing more efficient antivirals against HCV are needed. Compounds isolated from animal venoms have shown antiviral activity against some viruses such as Dengue virus, Yellow fever virus and Measles virus. In this study, we evaluated the effect of the complex crotoxin (CX) and its subunits crotapotin (CP) and phospholipase A2 (PLA2-CB) isolated from the venom of Crotalus durissus terrificus on HCV life cycle. Huh 7.5 cells were infected with HCVcc JFH-1 strain in the presence or absence of these toxins and virus was titrated by focus formation units assay or by qPCR. Toxins were added to the cells at different time points depending on the stage of virus life cycle to be evaluated. The results showed that treatment with PLA2-CB inhibited HCV entry and replication but no effect on HCV release was observed. CX reduced virus entry and release but not replication. By treating cells with CP, an antiviral effect was observed on HCV release, the only stage inhibited by this compound. Our data demonstrated the multiple antiviral effects of toxins from animal venoms on HCV life cycle

    tagPAINT: covalent labelling of genetically encoded protein tags for DNA-PAINT imaging

    Full text link
    Recently, DNA-PAINT single molecule localisation microscopy (SMLM) has shown great promise for quantitative imaging. However, labelling strategies so far have relied on approaches that are multivalent or affinity-based. Here, we demonstrate tagPAINT - the covalent labelling of expressed protein tags (SNAP tag and Halo tag) with single DNA docking strands for single molecule localisation microscopy via DNA-PAINT. We utilised tagPAINT for T-cell receptor signalling proteins at the immune synapse as a proof of principle
    corecore