92 research outputs found
Four methods for determining the composition of trace radioactive surface contamination of low-radioactivity metal
Four methods for determining the composition of low-level uranium- and
thorium-chain surface contamination are presented. One method is the
observation of Cherenkov light production in water. In two additional methods a
position-sensitive proportional counter surrounding the surface is used to make
both a measurement of the energy spectrum of alpha particle emissions and also
coincidence measurements to derive the thorium-chain content based on the
presence of short-lived isotopes in that decay chain. The fourth method is a
radiochemical technique in which the surface is eluted with a weak acid, the
eluate is concentrated, added to liquid scintillator and assayed by recording
beta-alpha coincidences. These methods were used to characterize two `hotspots'
on the outer surface of one of the He-3 proportional counters in the Neutral
Current Detection array of the Sudbury Neutrino Observatory experiment. The
methods have similar sensitivities, of order tens of ng, to both thorium- and
uranium-chain contamination.Comment: 22 pages, 19 figure
Hexagonal dielectric resonators and microcrystal lasers
We study long-lived resonances (lowest-loss modes) in hexagonally shaped
dielectric resonators in order to gain insight into the physics of a class of
microcrystal lasers. Numerical results on resonance positions and lifetimes,
near-field intensity patterns, far-field emission patterns, and effects of
rounding of corners are presented. Most features are explained by a
semiclassical approximation based on pseudointegrable ray dynamics and boundary
waves. The semiclassical model is also relevant for other microlasers of
polygonal geometry.Comment: 12 pages, 17 figures (3 with reduced quality
Astroparticle Physics with a Customized Low-Background Broad Energy Germanium Detector
The MAJORANA Collaboration is building the MAJORANA DEMONSTRATOR, a 60 kg
array of high purity germanium detectors housed in an ultra-low background
shield at the Sanford Underground Laboratory in Lead, SD. The MAJORANA
DEMONSTRATOR will search for neutrinoless double-beta decay of 76Ge while
demonstrating the feasibility of a tonne-scale experiment. It may also carry
out a dark matter search in the 1-10 GeV/c^2 mass range. We have found that
customized Broad Energy Germanium (BEGe) detectors produced by Canberra have
several desirable features for a neutrinoless double-beta decay experiment,
including low electronic noise, excellent pulse shape analysis capabilities,
and simple fabrication. We have deployed a customized BEGe, the MAJORANA
Low-Background BEGe at Kimballton (MALBEK), in a low-background cryostat and
shield at the Kimballton Underground Research Facility in Virginia. This paper
will focus on the detector characteristics and measurements that can be
performed with such a radiation detector in a low-background environment.Comment: Submitted to NIMA Proceedings, SORMA XII. 9 pages, 4 figure
The design, construction, and commissioning of the KATRIN experiment
The KArlsruhe TRItium Neutrino (KATRIN) experiment, which aims to make a direct and model-independent determination of the absolute neutrino mass scale, is a complex experiment with many components. More than 15 years ago, we published a technical design report (TDR) [1] to describe the hardware design and requirements to achieve our sensitivity goal of 0.2 eV at 90% C.L. on the neutrino mass. Since then there has been considerable progress, culminating in the publication of first neutrino mass results with the entire beamline operating [2]. In this paper, we document the current state of all completed beamline components (as of the first neutrino mass measurement campaign), demonstrate our ability to reliably and stably control them over long times, and present details on their respective commissioning campaigns
The Majorana Demonstrator readout electronics system
The Majorana Demonstrator comprises two arrays of high-purity germanium detectors constructed to search for neutrinoless double-beta decay in 76Ge and other physics beyond the Standard Model. Its readout electronics were designed to have low electronic noise, and radioactive backgrounds were minimized by using low-mass components and low-radioactivity materials near the detectors. This paper provides a description of all components of the Majorana Demonstrator readout electronics, spanning the front-end electronics and internal cabling, back-end electronics, digitizer, and power supplies, along with the grounding scheme. The spectroscopic performance achieved with these readout electronics is also demonstrated
The Majorana project
Building a 0νβ β experiment with the ability to probe neutrino mass in the inverted hierarchy region requires the combination of a large detector mass sensitive to 0νβ β, on the order of 1-tonne, and unprecedented background levels, on the order of or less than 1 count per year in the 0νβ β signal region. The Majorana Collaboration proposes a design based on using high-purity enriched 76Ge crystals deployed in ultra- low background electroformed Cu cryostats and using modern analysis techniques that should be capable of reaching the required sensitivity while also being scalable to a 1- tonne size. To demonstrate feasibility, the collaboration plans to construct a prototype system, the Majorana Demonstrator, consisting of 30 kg of 86% enriched 76Ge detectors and 30 kg of natural or isotope-76-depleted Ge detectors. We plan to deploy and evaluate two different Ge detector technologies, one based on a p-type configuration and the other on n-type
Search for Neutrinoless Double- β Decay in Ge 76 with the Majorana Demonstrator
The Majorana Collaboration is operating an array of high purity Ge detectors to search for neutrinoless double-β decay in Ge76. The Majorana Demonstrator comprises 44.1 kg of Ge detectors (29.7 kg enriched in Ge76) split between two modules contained in a low background shield at the Sanford Underground Research Facility in Lead, South Dakota. Here we present results from data taken during construction, commissioning, and the start of full operations. We achieve unprecedented energy resolution of 2.5 keV FWHM at Qββ and a very low background with no observed candidate events in 9.95 kg yr of enriched Ge exposure, resulting in a lower limit on the half-life of 1.9×1025 yr (90% C.L.). This result constrains the effective Majorana neutrino mass to below 240-520 meV, depending on the matrix elements used. In our experimental configuration with the lowest background, the background is 4.0-2.5+3.1 counts/(FWHM t yr)
Measurement of the νe and total 8B solar neutrino fluxes with the Sudbury Neutrino Observatory phase-III data set
This paper details the solar neutrino analysis of the 385.17-day phase-III data set acquired by the Sudbury Neutrino Observatory (SNO). An array of 3He proportional counters was installed in the heavy-water target to measure precisely the rate of neutrino-deuteron neutral-current interactions. This technique to determine the total active 8B solar neutrino flux was largely independent of the methods employed in previous phases. The total flux of active neutrinos was measured to be 5.54-0.31+0.33(stat.)-0.34+0.36(syst.)×106 cm-2 s-1, consistent with previous measurements and standard solar models. A global analysis of solar and reactor neutrino mixing parameters yielded the best-fit values of Δm2=7.59-0.21+0.19×10 -5eV2 and θ=34.4-1.2+1.3degrees
Analysis of shared heritability in common disorders of the brain
Paroxysmal Cerebral Disorder
Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo
Despite the growing number of binary black hole coalescences confidently observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include the effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that have already been identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total source-frame mass M > 70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz emitted gravitational-wave frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place a conservative upper limit for the merger rate density of high-mass binaries with eccentricities 0 < e ≤ 0.3 at 16.9 Gpc−3 yr−1 at the 90% confidence level
- …