8 research outputs found

    Subharmonic Almost Periodic Functions of Slow Growth

    No full text
    We obtain a complete description of the Riesz measures of almost periodic subharmonic functions with at most of linear growth on C. As a consequence we get a complete description of zero sets for the class of entire functions of exponential type with almost periodic modula

    Subharmonic almost periodic functions

    No full text
    We prove that almost periodicity in the sense of distributions coincides with almost periodicity with respect to Stepanov's metric for the class of subharmonic functions in a strip {z belongs C : a < Imz < b}. We also prove that Fourier coefficients of these functions are continuous functions in Imz. Further, if the logarithm of a subharmonic almost periodic function is a subharmonic function, then it is almost periodic

    Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network

    Get PDF
    Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium provided one of the most comprehensive maps of transcription start sites (TSSs) in several species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at unconventional regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we develop Cap Trap RNA-seq, a technology which combines cap trapping and long read MinION sequencing. We train sequence-based deep learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the importance of STR surrounding sequences not only to distinguish STR classes, but also to predict the level of transcription initiation. Importantly, genetic variants linked to human diseases are preferentially found at STRs with high transcription initiation level, supporting the biological and clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism

    A Gibbs sampler for identification of symmetrically structured, spaced DNA motifs with improved estimation of the signal length

    No full text
    Motivation: Transcription regulatory protein factors often bind DNA as homo-dimers or hetero-dimers. Thus they recognize structured DNA motifs that are inverted or direct repeats or spaced motif pairs. However, these motifs are often difficult to identify owing to their high divergence. The motif structure included explicitly into the motif recognition algorithm improves recognition efficiency for highly divergent motifs as well as estimation of motif geometric parameters. Result: We present a modification of the Gibbs sampling motif extraction algorithm, SeSiMCMC (Sequence Similarities by Markov Chain Monte Carlo), which finds structured motifs of these types, as well as non-structured motifs, in a set of unaligned DNA sequences. It employs improved estimators of motif and spacer lengths. The probability that a sequence does not contain any motif is accounted for in a rigorous Bayesian manner. We have applied the algorithm to a set of upstream regions of genes from two Escherichia coli regulons involved in respiration. We have demonstrated that accounting for a symmetric motif structure allows the algorithm to identify weak motifs more accurately. In the examples studied, ArcA binding sites were demonstrated to have the structure of a direct spaced repeat, whereas NarP binding sites exhibited the palindromic structure. Availability: The WWW interface of the program, its FreeBSD (4.0) and Windows 32 console executables are available at http://bioinform.genetika.ru/SeSiMCM

    Genetic Markers for Personalized Therapy of Polygenic Diseases: Pharmacogenetics of Multiple Sclerosis

    No full text

    A promoter-level mammalian expression atlas

    No full text
    Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly ‘housekeeping’, whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research

    Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network

    No full text
    10.1038/s41467-021-23143-7Nature Communications121329
    corecore