474 research outputs found
Effect of PolyGlycopleX (PGX) consumption on blood lipid profiles in healthy, Low CVD risk overweight adults
Raised blood lipid levels are associated with a risk of a cardiovascular disease (CVD). Moderate reductions in several CVD factors such as total, low-density lipoprotein (LDL) cholesterol and non-high-density lipoprotein (non-HDL) cholesterol concentrations may be more effective in reducing overall risk than a major reduction in just one. A blind, randomised controlled trial was conducted with 120 healthy overweight (BMI 25–30) adults aged 25–70 years who were non-smokers, not diabetic and of low risk of cardiovascular disease, as assessed by the Framingham risk equation. Participants consumed 4.5 g PolyGlycopleX (PGX) as softgel capsules (PGXS) or 5 g PGX granules (PGXG) or 5 g rice flour (RF) with meals three times a day for 12 weeks. Total, LDL and non-HDL cholesterol were all significantly reduced (−6%, −5% and −3.5%, respectively) post the PGX granule treatment; however, PGX in softgel capsule form did not affect blood lipid profiles. Daily consumption of PGX granules in overweight low CVD risk adults produced lipid changes indicating a CVD preventative benefit
Characterization of mutant met100lys of cytochrome c-550 from thibacillus-versutus with Lysine-histidine heme ligation
Macromolecular Biochemistr
Mesoscopic phase separation in La2CuO4.02 - a 139La NQR study
In crystals of La2CuO4.02 oxygen diffusion can be limited to such small
length scales, that the resulting phase separation is invisible for neutrons.
Decomposition of the 139La NQR spectra shows the existence of three different
regions, of which one orders antiferromagnetically below 17K concomitantly with
the onset of a weak superconductivity in the crystal. These regions are
compared to the macroscopic phases seen previously in the title compound and
the cluster-glass and striped phases reported for the underdoped Sr-doped
cuprates.Comment: 4 pages, RevTeX, 5 figures, to be published in PR
Aurigaia: mock Gaia DR2 stellar catalogues from the Auriga cosmological simulations
We present and analyse mock stellar catalogues that match the selection criteria and observables (including uncertainties) of the Gaia satellite data release 2 (DR2). The source are six cosmological high-resolution magneto-hydrodynamic ΛCDM zoom simulations of the formation of Milky Way analogues from the AURIGA project. Mock data are provided for stars with V 20 deg. The mock catalogues are made using two different methods: the public SNAPDRAGONS code, and a method based on that of Lowing et al. (2015) that preserves the phase-space distribution of the model stars. These publicly available catalogues contain five-parameter astrometry, radial velocities, multiband photometry, stellar parameters, dust extinction values, and uncertainties in all these quantities. In addition, we provide the gravitational potential and information on the origin of each star. By way of demonstration, we apply the mock catalogues to analyses of the young stellar disc and the stellar halo. We show that (i) the young outer stellar disc exhibits a flared distribution that is detectable in the height and vertical velocity distribution of A - and B -dwarf stars up to radii of ∼15 kpc, and (ii) the spin of the stellar halo out to 100 kpc can be accurately measured with Gaia DR2 RR Lyrae stars. These catalogues are well suited for comparisons with observations and should help to (i) develop and test analysis methods for the Gaia DR2 data, (ii) gauge the limitations and biases of the data, and (iii) interpret the data in the light of theoretical predictions from realistic ab initio simulations of galaxy formation in the ΛCDM cosmological model
Predator‐induced shape plasticity in Daphnia pulex
All animals and plants respond to changes in the environment during their life cycle. This flexibility is known as phenotypic plasticity and allows organisms to cope with variable environments. A common source of environmental variation is predation risk, which describes the likelihood of being attacked and killed by a predator. Some species can respond to the level of predation risk by producing morphological defences against predation. A classic example is the production of so‐called ‘neckteeth’ in the water flea, Daphnia pulex, which defend against predation from Chaoborus midge larvae. Previous studies of this defence have focussed on changes in pedestal size and the number of spikes along a gradient of predation risk. Although these studies have provided a model for continuous phenotypic plasticity, they do not capture the whole‐organism shape response to predation risk. In contrast, studies in fish and amphibians focus on shape as a complex, multi‐faceted trait made up of different variables. In this study, we analyse how multiple aspects of shape change in D. pulex along a gradient of predation risk from Chaoborus flavicans. These changes are dominated by the neckteeth defence, but there are also changes in the size and shape of the head and the body. We detected change in specific modules of the body plan and a level of integration among modules. These results are indicative of a complex, multi‐faceted response to predation and provide insight into how predation risk drives variation in shape and size at the level of the whole organism
Upper critical field for underdoped high-T_c superconductors. Pseudogap and stripe--phase
We investigate the upper critical field in a stripe--phase and in the
presence of a phenomenological pseudogap. Our results indicate that the
formation of stripes affects the Landau orbits and results in an enhancement of
. On the other hand, phenomenologically introduced pseudogap leads to a
reduction of the upper critical field. This effect is of particular importance
when the magnitude of the gap is of the order of the superconducting transition
temperature. We have found that a suppression of the upper critical field takes
place also for the gap that originates from the charge--density waves.Comment: 7 pages, 5 figure
Long Hole Film Cooling Dataset for CFD Development - Flow and Film Effectiveness
An experiment investigating flow and heat transfer of long (length to diameter ratio of 18) cylindrical film cooling holes has been completed. In this paper, the thermal field in the flow and on the surface of the film cooled flat plate is presented for nominal freestream turbulence intensities of 1.5 and 8 percent. The holes are inclined at 30 deg above the downstream direction, injecting chilled air of density ratio 1.0 onto the surface of a flat plate. The diameter of the hole is 0.75 in. (approx. 0.02 m) with center to center spacing (pitch) of 3 hole diameters. Coolant was injected into the mainstream flow at nominal blowing ratios of 0.5, 1.0, 1.5, and 2.0. The Reynolds number of the freestream was approximately 11,000 based on hole diameter. Thermocouple surveys were used to characterize the thermal field. Infrared thermography was used to determine the adiabatic film effectiveness on the plate. Hotwire anemometry was used to provide flowfield physics and turbulence measurements. The results are compared to existing data in the literature. The aim of this work is to produce a benchmark dataset for Computational Fluid Dynamics (CFD) development to eliminate the effects of hole length to diameter ratio and to improve resolution in the near-hole region. In this report, a Time Filtered Navier Stokes (TFNS), also known as Partially Resolved Navier Stokes (PRNS), method that was implemented in the Glenn-HT code is used to model coolant-mainstream interaction. This method is a high fidelity unsteady method that aims to represent large scale flow features and mixing more accurately
Formation and Evolution of Supermassive Black Holes
The correlation between the mass of supermassive black holes in galaxy nuclei
and the mass of the galaxy spheroids or bulges (or more precisely their central
velocity dispersion), suggests a common formation scenario for galaxies and
their central black holes. The growth of bulges and black holes can commonly
proceed through external gas accretion or hierarchical mergers, and are both
related to starbursts. Internal dynamical processes control and regulate the
rate of mass accretion. Self-regulation and feedback are the key of the
correlation. It is possible that the growth of one component, either BH or
bulge, takes over, breaking the correlation, as in Narrow Line Seyfert 1
objects. The formation of supermassive black holes can begin early in the
universe, from the collapse of Population III, and then through gas accretion.
The active black holes can then play a significant role in the re-ionization of
the universe. The nuclear activity is now frequently invoked as a feedback to
star formation in galaxies, and even more spectacularly in cooling flows. The
growth of SMBH is certainly there self-regulated. SMBHs perturb their local
environment, and the mergers of binary SMBHs help to heat and destroy central
stellar cusps. The interpretation of the X-ray background yields important
constraints on the history of AGN activity and obscuration, and the census of
AGN at low and at high redshifts reveals the downsizing effect, already
observed for star formation. History appears quite different for bright QSO and
low-luminosity AGN: the first grow rapidly at high z, and their number density
decreases then sharply, while the density of low-luminosity objects peaks more
recently, and then decreases smoothly.Comment: 31 pages, 13 figures, review paper for Astrophysics Update
Influence of incommensurate dynamic charge-density wave scattering on the line shape of high-T cuprates
We show that the spectral lineshape of superconducting
LaSrCuO (LSCO) and BiSrCaCuO (Bi2212)
can be well described by the coupling of the charge carriers to collective
incommensurate charge-density wave (CDW) excitations. Our results imply that
besides antiferromagnetic (AF) fluctuations also low-energy CDW modes can
contribute to the observed dip-hump structure in the Bi2212 photoemission
spectra. In case of underdoped LSCO we propose a possible interpretation of
ARPES data in terms of a grid pattern of fluctuating stripes where the charge
and spin scattering directions deviate by . Within this scenario
we find that the spectral intensity along is strongly
suppressed consistent with recent photoemission experiments. In addition the
incommensurate charge-density wave scattering leads to a significant broadening
of the quasiparticle-peak around .Comment: 5 pages, 4 figure
- …