785 research outputs found

    The Exact Correspondence between Phase Times and Dwell Times in a Symmetrical Quantum Tunneling Configuration

    Full text link
    The general and explicit relation between the phase time and the dwell time for quantum tunneling or scattering is investigated. Considering a symmetrical collision of two identical wave packets with an one-dimensional barrier, here we demonstrate that these two distinct transit time definitions give connected results where, however, the phase time (group delay) accurately describes the exact position of the scattered particles. The analytical difficulties that arise when the stationary phase method is employed for obtaining phase (traversal) times are all overcome. Multiple wave packet decomposition allows us to recover the exact position of the reflected and transmitted waves in terms of the phase time, which, in addition to the exact relation between the phase time and the dwell time, leads to right interpretation for both of them.Comment: 11 pages, 2 figure

    Beyond CREA: evolutionary patterns of non‐allometric shape variation and divergence in a highly allometric clade of murine rodents

    Get PDF
    The shared functions of the skull are thought to result in common evolutionary patterns in mammalian cranial shape. Craniofacial evolutionary allometry (CREA) is a particularly prominent pattern where larger species display proportionally elongate facial skeletons and smaller braincases. It was recently proposed that CREA arises from biomechanical effects of cranial scaling when diets are similar. Thus, deviations from CREA should occur with changes in cranial biomechanics, for example due to dietary change. Here, we test this using 3D geometric morphometric analysis in a dataset of Australian murine crania, which are highly allometric. We contrast allometric and non‐allometric variation in the cranium by comparing evolutionary mode, allometry, ordinations, as well as allometry, integration, and modularity in functional modules. We found evidence of stabilising selection in allometry‐containing and size‐free shape, and substantial non‐allometric variation aligned with dietary specialisation in parallel with CREA. Integration among cranial modules was higher, and modularity lower, with size included, but integration between rostrum and cranial vault, which are involved in the CREA pattern, dropped dramatically after size removal. Our results thus support the hypothesis that CREA is a composite arising from selection on cranial function, with substantial non‐allometric shape variation occurring alongside CREA where dietary specialisation impacts selection on gnawing function. This emphasises the need to research mammalian cranial evolution in the context of allometric and non‐allometric selection on biomechanical function

    Of Gold and Paper Money

    Get PDF
    We consider the role of money as a means of payment, store of value and medium of exchange. I outline a number of quantitative and qualitative experiences of monetary management. Successful regimes have sprung up in a variety of surprising places, and been sustained with state (centralised) interventions. Although the link between state and money, and its standard of identity and account may be clear, particularly in earlier stages of economic development, the extent to which the state is widely felt to hold responsibility for 'sound money' is less clear in modern democracies, where there are many other public responsibilities implying ongoing trade-offs

    Small Corrections to the Tunneling Phase Time Formulation

    Full text link
    After reexamining the above barrier diffusion problem where we notice that the wave packet collision implies the existence of {\em multiple} reflected and transmitted wave packets, we analyze the way of obtaining phase times for tunneling/reflecting particles in a particular colliding configuration where the idea of multiple peak decomposition is recovered. To partially overcome the analytical incongruities which frequently rise up when the stationary phase method is adopted for computing the (tunneling) phase time expressions, we present a theoretical exercise involving a symmetrical collision between two identical wave packets and a unidimensional squared potential barrier where the scattered wave packets can be recomposed by summing the amplitudes of simultaneously reflected and transmitted wave components so that the conditions for applying the stationary phase principle are totally recovered. Lessons concerning the use of the stationary phase method are drawn.Comment: 14 pages, 3 figure

    Work function changes in the double layered manganite La1.2Sr1.8Mn2O7

    Full text link
    We have investigated the behaviour of the work function of La1.2Sr1.8Mn2O7 as a function of temperature by means of photoemission. We found a decrease of 55 +/- 10 meV in going from 60 K to just above the Curie temperature (125 K) of the sample. Above T_C the work function appears to be roughly constant. Our results are exactly opposite to the work function changes calculated from the double-exchange model by Furukawa, but are consistent with other measurements. The disagreement with double-exchange can be explained using a general thermodynamic relation valid for second order transitions and including the extra processes involved in the manganites besides double-exchange interaction.Comment: 6 pages, 4 figures included in tex

    Epigenome-wide association of PTSD from heterogeneous cohorts with a common multi-site analysis pipeline

    Get PDF
    Compelling evidence suggests that epigenetic mechanisms such as DNA methylation play a role in stress regulation and in the etiologic basis of stress related disorders such as Post traumatic Stress Disorder (PTSD). Here we describe the purpose and methods of an international consortium that was developed to study the role of epigenetics in PTSD. Inspired by the approach used in the Psychiatric Genomics Consortium, we brought together investigators representing seven cohorts with a collective sample size of N = 1147 that included detailed information on trauma exposure, PTSD symptoms, and genome-wide DNA methylation data. The objective of this consortium is to increase the analytical sample size by pooling data and combining expertise so that DNA methylation patterns associated with PTSD can be identified. Several quality control and analytical pipelines were evaluated for their control of genomic inflation and technical artifacts with a joint analysis procedure established to derive comparable data over the cohorts for meta-analysis. We propose methods to deal with ancestry population stratification and type I error inflation and discuss the advantages and disadvantages of applying robust error estimates. To evaluate our pipeline, we report results from an epigenome-wide association study (EWAS) of age, which is a well-characterized phenotype with known epigenetic associations. Overall, while EWAS are highly complex and subject to similar challenges as genome-wide association studies (GWAS), we demonstrate that an epigenetic meta-analysis with a relatively modest sample size can be well-powered to identify epigenetic associations. Our pipeline can be used as a framework for consortium efforts for EWAS

    EndoTime: non-categorical timing estimates for luteal endometrium

    Get PDF
    STUDY QUESTION Can the accuracy of timing of luteal phase endometrial biopsies based on urinary ovulation testing be improved by measuring the expression of a small number of genes and a continuous, non-categorical modelling approach? SUMMARY ANSWER Measuring the expression levels of six genes (IL2RB, IGFBP1, CXCL14, DPP4, GPX3 and SLC15A2) is sufficient to obtain substantially more accurate timing estimates and to assess the reliability of timing estimates for each sample. WHAT IS KNOWN ALREADY Commercially available endometrial timing approaches based on gene expression require large gene sets and use a categorical approach that classifies samples as pre-receptive, receptive or post-receptive. STUDY DESIGN, SIZE, DURATION Gene expression was measured by RTq-PCR in different sample sets, comprising a total of 664 endometrial biopsies obtained 4–12 days after a self-reported positive home ovulation test. A further 36 endometrial samples were profiled by RTq-PCR as well as RNA-sequencing. PARTICIPANTS/MATERIALS, SETTING, METHODS A computational procedure, named ‘EndoTime’, was established that models the temporal profile of each gene and estimates the timing of each sample. Iterating these steps, temporal profiles are gradually refined as sample timings are being updated, and confidence in timing estimates is increased. After convergence, the method reports updated timing estimates for each sample while preserving the overall distribution of time points. MAIN RESULTS AND THE ROLE OF CHANCE The Wilcoxon rank-sum test was used to confirm that ordering samples by EndoTime estimates yields sharper temporal expression profiles for held-out genes (not used when determining sample timings) than ordering the same expression values by patient-reported times (GPX3: P  0.05). LARGE SCALE DATA The RTq-PCR data files are available via the GitHub repository for the EndoTime software at https://github.com/AE-Mitchell/EndoTime, as is the code used for pre-processing of RTq-PCR data. The RNA-sequencing data are available on GEO (accession GSE180485). LIMITATIONS, REASONS FOR CAUTION Timing estimates are informed by glandular gene expression and will only represent the temporal state of other endometrial cell types if in synchrony with the epithelium. Methods that estimate the day of ovulation are still required as these data are essential inputs in our method. Our approach, in its current iteration, performs batch correction such that larger sample batches impart greater accuracy to timing estimations. In theory, our method requires endometrial samples obtained at different days in the luteal phase. In practice, however, this is not a concern as timings based on urinary ovulation testing are associated with a sufficient level of noise to ensure that a variety of time points will be sampled. WIDER IMPLICATIONS OF THE FINDINGS Our method is the first to assay the temporal state of luteal-phase endometrial samples on a continuous domain. It is freely available with fully shared data and open-source software. EndoTime enables accurate temporal profiling of any gene in luteal endometrial samples for a wide range of research applications and, potentially, clinical use

    Search for Λc+→pK+π−\Lambda_c^+ \to p K^+ \pi^- and Ds+→K+K+π−D_s^+ \to K^+ K^+ \pi^- Using Genetic Programming Event Selection

    Full text link
    We apply a genetic programming technique to search for the double Cabibbo suppressed decays Λc+→pK+π−\Lambda_c^+ \to p K^+ \pi^- and Ds+→K+K+π−D_s^+ \to K^+ K^+ \pi^-. We normalize these decays to their Cabibbo favored partners and find BR(\text{BR}(\Lambda_c^+ \to p K^+ \pi^-)/BR()/\text{BR}(\Lambda_c^+ \to p K^- \pi^+)=(0.05±0.26±0.02)) = (0.05 \pm 0.26 \pm 0.02)% and BR(\text{BR}(D_s^+ \to K^+ K^+ \pi^-)/BR()/\text{BR}(D_s^+ \to K^+ K^- \pi^+)=(0.52±0.17±0.11)) = (0.52\pm 0.17\pm 0.11)% where the first errors are statistical and the second are systematic. Expressed as 90% confidence levels (CL), we find <0.46< 0.46 % and <0.78 < 0.78% respectively. This is the first successful use of genetic programming in a high energy physics data analysis.Comment: 10 page
    • 

    corecore