25 research outputs found

    Small-x QCD Effects in Particle Collisions at High Energies

    Get PDF
    Recent theoretical developments to calculate cross sections of hadronic objects in the high energy limit are summarised and experimental attempts to establish the need for new QCD effects connected with a resummation of small hadron momentum fractions x are reviewed. The relation between small-xx parton dynamics and the phenomenon of diffraction is briefly out-lined. In addition, a search for a novel, non-perturbative QCD effect, the production of QCD instanton induced events, is presented.Comment: Invited talk at the XX. Int. Sym. on Lepton and Photon Interactions at High Energies, Rome, Italy, July 200

    Parton-Hadron Duality in Unpolarised and Polarised Structure Functions

    Full text link
    We study the phenomenon of parton-hadron duality in both polarised and unpolarised electron proton scattering using the HERMES and the Jefferson Lab data, respectively. In both cases we extend a systematic perturbative QCD based analysis to the integrals of the structure functions in the resonance region. After subtracting target mass corrections and large x resummation effects, we extract the remaining power corrections up to order 1/Q^2. We find a sizeable suppression of these terms with respect to analyses using deep inelastic scattering data. The suppression appears consistently in both polarised and unpolarised data, except for the low Q^2 polarised data, where a large negative higher twist contribution remains. Possible scenarios generating this behavior are discussed.Comment: 17 pages, 9 figure

    Understanding the newly observed Y(4008) by Belle

    Full text link
    Very recently a new enhancement around 4.05 GeV was observed by Belle experiment. In this short note, we discuss some possible assignments for this enhancement, i.e. ψ(3S)\psi(3S) and DDˉD^*\bar{D}^* molecular state. In these two assignments, Y(4008) can decay into J/ψπ0π0J/\psi\pi^0\pi^0 with comparable branching ratio with that of Y(4008)J/ψπ+πY(4008)\to J/\psi\pi^+\pi^-. Thus one suggests high energy experimentalists to look for Y(4008) in J/ψπ0π0J/\psi\pi^0\pi^0 channel. Furthermore one proposes further experiments to search missing channel DDˉD\bar{D}, DDˉ+h.c.D\bar{D}^*+h.c. and especially χcJπ+ππ0\chi_{cJ}\pi^+\pi^-\pi^0 and ηcπ+ππ0\eta_c\pi^+\pi^-\pi^0, which will be helpful to distinguish ψ(3S)\psi(3S) and DDˉD^*\bar{D}^* molecular state assignments for this new enhancement.Comment: 4 pages, 5 figures. Typos correcte

    A low-lying scalar meson nonet in a unitarized meson model

    Full text link
    A unitarized nonrelativistic meson model which is successful for the description of the heavy and light vector and pseudoscalar mesons yields, in its extension to the scalar mesons but for the same model parameters, a complete nonet below 1 GeV. In the unitarization scheme, real and virtual meson-meson decay channels are coupled to the quark-antiquark confinement channels. The flavor-dependent harmonic-oscillator confining potential itself has bound states epsilon(1.3 GeV), S(1.5 GeV), delta(1.3 GeV), kappa(1.4 GeV), similar to the results of other bound-state qqbar models. However, the full coupled-channel equations show poles at epsilon(0.5 GeV), S(0.99 GeV), delta(0.97 GeV), kappa(0.73 GeV). Not only can these pole positions be calculated in our model, but also cross sections and phase shifts in the meson-scattering channels, which are in reasonable agreement with the available data for pion-pion, eta-pion and Kaon-pion in S-wave scattering.Comment: A slightly revised version of Zeitschrift fuer Physik C30, 615 (1986

    Asymmetric Inflationary Reheating and the Nature of Mirror Universe

    Get PDF
    The existence of a shadow world (or mirror universe) with matter and forces identical to that of the visible world but interacting with the latter only via gravity can be motivated by superstring theories as well as by recent attempts to understand the nature of a sterile neutrino needed if all known neutrino data are to be consistent with each other. A simple way to reconcile the constraints of big bang nucleosynthesis in such a theory is to postulate that the reheating temperature after inflation in the mirror universe is lower than that in the visible one. We have constructed explicit models that realize this proposal and have shown that the asymmetric reheating can be related to a difference of the electroweak symmetry breaking scales in the two sectors, which is needed for a solution of the neutrino puzzles in this picture. Cosmological implications of the mirror matter are also discussed.Comment: 13 pages, LATEX, no figures (slight textual changes, few references added

    Solution of the Kwiecinski evolution equations for unintegrated parton distributions using the Mellin transform

    Full text link
    The Kwiecinski equations for the QCD evolution of the unintegrated parton distributions in the transverse-coordinate space (b) are analyzed with the help of the Mellin-transform method. The equations are solved numerically in the general case, as well as in a small-b expansion which converges fast for b Lambda_QCD sufficiently small. We also discuss the asymptotic limit of large bQ and show that the distributions generated by the evolution decrease with b according to a power law. Numerical results are presented for the pion distributions with a simple valence-like initial condition at the low scale, following from chiral large-N_c quark models. We use two models: the Spectral Quark Model and the Nambu--Jona-Lasinio model. Formal aspects of the equations, such as the analytic form of the b-dependent anomalous dimensions, their analytic structure, as well as the limits of unintegrated parton densities at x -> 0, x -> 1, and at large b, are discussed in detail. The effect of spreading of the transverse momentum with the increasing scale is confirmed, with growing asymptotically as Q^2 alpha(Q^2). Approximate formulas for for each parton species is given, which may be used in practical applications.Comment: 18 pages, 6 figures, RevTe

    X(3872) and Other Possible Heavy Molecular States

    Full text link
    We perform a systematic study of the possible molecular states composed of a pair of heavy mesons such as DDˉD\bar D, DDˉD^\ast\bar D, DDˉD^\ast \bar D^\ast in the framework of the meson exchange model. The exchanged mesons include the pseudoscalar, scalar and vector mesons. Through our investigation, we find that (1) the structure X(3764) is not a molecular state; (2) There exists strong attraction in the range r<1r < 1 fm for the DDˉD^*\bar D^* system with J=0,1J=0, 1. If future experiments confirm Z+(4051)Z^+(4051) as a loosely bound molecular state, its quantum number is probably JP=0+J^{P}=0^+. Its partner state Φ0\Phi^{**0} may be searched for in the π0χc1\pi^0\chi_{c1} channel; (3) The vector meson exchange provides strong attraction in the DDˉD^\ast \bar D channel together with the pion exchange. A bound state solution exists with a reasonable cutoff parameter Λ1.4\Lambda\sim 1.4 GeV. X(3872) may be accommodated as a molecular state dynamically although drawing a very definite conclusion needs further investigation; (4) The BBˉB^\ast \bar B molecular state exists.Comment: 21 pages, 17 tables, 11 figures. Typos correcte

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair
    corecore