530 research outputs found

    High Pressure Thermoelasticity of Body-centered Cubic Tantalum

    Full text link
    We have investigated the thermoelasticity of body-centered cubic (bcc) tantalum from first principles by using the linearized augmented plane wave (LAPW) and mixed--basis pseudopotential methods for pressures up to 400 GPa and temperatures up to 10000 K. Electronic excitation contributions to the free energy were included from the band structures, and phonon contributions were included using the particle-in-a-cell (PIC) model. The computed elastic constants agree well with available ultrasonic and diamond anvil cell data at low pressures, and shock data at high pressures. The shear modulus c44c_{44} and the anisotropy change behavior with increasing pressure around 150 GPa because of an electronic topological transition. We find that the main contribution of temperature to the elastic constants is from the thermal expansivity. The PIC model in conjunction with fast self-consistent techniques is shown to be a tractable approach to studying thermoelasticity.Comment: To be appear in Physical Review

    Information and noise in quantum measurement

    Get PDF
    Even though measurement results obtained in the real world are generally both noisy and continuous, quantum measurement theory tends to emphasize the ideal limit of perfect precision and quantized measurement results. In this article, a more general concept of noisy measurements is applied to investigate the role of quantum noise in the measurement process. In particular, it is shown that the effects of quantum noise can be separated from the effects of information obtained in the measurement. However, quantum noise is required to ``cover up'' negative probabilities arising as the quantum limit is approached. These negative probabilities represent fundamental quantum mechanical correlations between the measured variable and the variables affected by quantum noise.Comment: 16 pages, short comment added in II.B., final version for publication in Phys. Rev.

    Production of Medical Radioisotopes with High Specific Activity in Photonuclear Reactions with Îł\gamma Beams of High Intensity and Large Brilliance

    Full text link
    We study the production of radioisotopes for nuclear medicine in (Îł,xn+yp)(\gamma,x{\rm n}+y{\rm p}) photonuclear reactions or (Îł,Îłâ€Č\gamma,\gamma') photoexcitation reactions with high flux [(1013−101510^{13}-10^{15})Îł\gamma/s], small diameter ∌(100 Ό\sim (100 \, \mum)2)^2 and small band width (ΔE/E≈10−3−10−4\Delta E/E \approx 10^{-3}-10^{-4}) Îł\gamma beams produced by Compton back-scattering of laser light from relativistic brilliant electron beams. We compare them to (ion,xxn+y + yp) reactions with (ion=p,d,α\alpha) from particle accelerators like cyclotrons and (n,Îł\gamma) or (n,f) reactions from nuclear reactors. For photonuclear reactions with a narrow Îł\gamma beam the energy deposition in the target can be managed by using a stack of thin target foils or wires, hence avoiding direct stopping of the Compton and pair electrons (positrons). (Îł,Îłâ€Č)(\gamma,\gamma') isomer production via specially selected Îł\gamma cascades allows to produce high specific activity in multiple excitations, where no back-pumping of the isomer to the ground state occurs. We discuss in detail many specific radioisotopes for diagnostics and therapy applications. Photonuclear reactions with Îł\gamma beams allow to produce certain radioisotopes, e.g. 47^{47}Sc, 44^{44}Ti, 67^{67}Cu, 103^{103}Pd, 117m^{117m}Sn, 169^{169}Er, 195m^{195m}Pt or 225^{225}Ac, with higher specific activity and/or more economically than with classical methods. This will open the way for completely new clinical applications of radioisotopes. For example 195m^{195m}Pt could be used to verify the patient's response to chemotherapy with platinum compounds before a complete treatment is performed. Also innovative isotopes like 47^{47}Sc, 67^{67}Cu and 225^{225}Ac could be produced for the first time in sufficient quantities for large-scale application in targeted radionuclide therapy.Comment: submitted to Appl. Phys.

    Selective quantum evolution of a qubit state due to continuous measurement

    Full text link
    We consider a two-level quantum system (qubit) which is continuously measured by a detector. The information provided by the detector is taken into account to describe the evolution during a particular realization of measurement process. We discuss the Bayesian formalism for such ``selective'' evolution of an individual qubit and apply it to several solid-state setups. In particular, we show how to suppress the qubit decoherence using continuous measurement and the feedback loop.Comment: 15 pages (including 9 figures

    Quantum Locality

    Full text link
    It is argued that while quantum mechanics contains nonlocal or entangled states, the instantaneous or nonlocal influences sometimes thought to be present due to violations of Bell inequalities in fact arise from mistaken attempts to apply classical concepts and introduce probabilities in a manner inconsistent with the Hilbert space structure of standard quantum mechanics. Instead, Einstein locality is a valid quantum principle: objective properties of individual quantum systems do not change when something is done to another noninteracting system. There is no reason to suspect any conflict between quantum theory and special relativity.Comment: Introduction has been revised, references added, minor corrections elsewhere. To appear in Foundations of Physic

    Rhizosphere-scale quantification of hydraulic and mechanical properties of soil impacted by root and seed exudates

    Get PDF
    Using rhizosphere-scale physical measurements we test the hypothesis that plant exudates gel together soil particles and on drying they enhance soil water repellency. Barley and maize root exudates were compared with chia seed exudate, a commonly used root exudate analogue. Sandy loam and clay loam soils were treated with root exudates at 0.46 and 4.6 mg exudate g-1 dry soil, and chia seed exudate at 0.046, 0.46, 0.92, 2.3 and 4.6 mg exudate g-1 dry soil. Soil hardness and modulus of elasticity were measured at -10 kPa matric potential using a 3 mm diameter spherical indenter. Water sorptivity and repellency index of air-dry soil were measured using a miniaturized infiltrometer device with a 1 mm tip radius. Soil hardness increased by 28% for barley root exudate, 62% for maize root exudate, and 86% for chia seed exudate at 4.6 mg g-1 concentration for sandy loam soil. For a clay loam soil, root exudates did not affect soil hardness, whereas chia seed exudate increased soil hardness by 48% at 4.6 mg g-1concentration. Soil water repellency increased by 48% for chia seed exudate and 23% for maize root exudate, but not for barley root exudate at 4.6 mg g-1 concentration for sandy loam soil. For clay loam soil, chia seed exudate increased water repellency by 45%, whereas root exudates did not affect water repellency at 4.6 mg g-1concentration. Water sorptivity and repellency were both correlated with hardness, presumably due to the combined influence of exudates on hydrological and mechanical properties of soils

    Orbital-selective Mott transitions: Heavy fermions and beyond

    Full text link
    Quantum phase transitions in metals are often accompanied by violations of Fermi liquid behavior in the quantum critical regime. Particularly fascinating are transitions beyond the Landau-Ginzburg-Wilson concept of a local order parameter. The breakdown of the Kondo effect in heavy-fermion metals constitutes a prime example of such a transition. Here, the strongly correlated f electrons become localized and disappear from the Fermi surface, implying that the transition is equivalent to an orbital-selective Mott transition, as has been discussed for multi-band transition-metal oxides. In this article, available theoretical descriptions for orbital-selective Mott transitions will be reviewed, with an emphasis on conceptual aspects like the distinction between different low-temperature phases and the structure of the global phase diagram. Selected results for quantum critical properties will be listed as well. Finally, a brief overview is given on experiments which have been interpreted in terms of orbital-selective Mott physics.Comment: 29 pages, 4 figs, mini-review prepared for a special issue of JLT

    A framework for the cross-sectoral integration of multi-model impact projections: land use decisions under climate impacts uncertainties

    Get PDF
    Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impactmodel setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop- and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making

    Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison

    Get PDF
    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies
    • 

    corecore