465 research outputs found

    Saethre-Chotzen mutations cause TWIST protein degradation or impaired nuclear location

    Get PDF
    International audienceH-TWIST belongs to the family of basic helix-loop-helix (bHLH) transcription factors known to exert their activity through dimer formation. We have demonstrated recently that mutations in H-TWIST account for Saethre-Chotzen syndrome (SCS), an autosomal dominant craniosynostosis syndrome characterized by premature fusion of coronal sutures and limb abnormalities of variable severity. Although insertions, deletions, nonsense and missense mutations have been identified, no genotype-phenotype correlation could be found, suggesting that the gene alterations lead to a loss of protein function irrespective of the mutation. To assess this hypothesis, we studied stability, dimerization capacities and subcellular distribution of three types of TWIST mutant. Here, we show that: (i) nonsense mutations resulted in truncated protein instability; (ii) missense mutations involving the helical domains led to a complete loss of H-TWIST heterodimerization with the E12 bHLH protein in the two-hybrid system and dramatically altered the ability of the TWIST protein to localize in the nucleus of COS-transfected cells; and (iii) in-frame insertion or missense mutations within the loop significantly altered dimer formation but not the nuclear location of the protein. We conclude that at least two distinct mechanisms account for loss of TWIST protein function in SCS patients, namely protein degradation and subcellular mislocalization

    Influence of the confinement geometry on surface superconductivity

    Full text link
    The nucleation field for surface superconductivity, Hc3H_{c3}, depends on the geometrical shape of the mesoscopic superconducting sample and is substantially enhanced with decreasing sample size. As an example we studied circular, square, triangular and wedge shaped disks. For the wedge the nucleation field diverges as Hc3/Hc2=3/αH_{c3}/H_{c2}=\sqrt{3}/\alpha with decreasing angle (α\alpha) of the wedge, where Hc2H_{c2} is the bulk upper critical field.Comment: 4 pages, 3 figures. Accepted for publication in Phys. Rev.

    Nanosized superconducting constrictions

    Full text link
    Nanowires of lead between macroscopic electrodes are produced by means of an STM. Magnetic fields may destroy the superconductivity in the electrodes, while the wire remains in the superconducting state. The properties of the resulting microscopic Josephson junctions are investigated.Comment: 3 pages,3 eps figures include

    Mesoscopic superconductors in the London limit: equilibrium properties and metastability

    Full text link
    We present a study of the behaviour of metastable vortex states in mesoscopic superconductors. Our analysis relies on the London limit within which it is possible to derive closed analytical expressions for the magnetic field and the Gibbs free energy. We consider in particular the situation where the vortices are symmetrically distributed along a closed ring. There, we obtain expressions for the confining Bean-Livingston barrier and for the magnetization which turns out to be paramagnetic away from thermodynamic equilibrium. At low temperature, the barrier is high enough for this regime to be observable. We propose also a local description of both thermodynamic and metastable states based on elementary topological considerations; we find structural phase transitions of vortex patterns between these metastable states and we calculate the corresponding critical fields.Comment: 24 pages, 20 figure

    Flux-Induced Vortex in Mesoscopic Superconducting Loops

    Full text link
    We predict the existence of a quantum vortex for an unusual situation. We study the order parameter in doubly connected superconducting samples embedded in a uniform magnetic field. For samples with perfect cylindrical symmetry, the order parameter has been known for long and no vortices are present in the linear regime. However, if the sample is not symmetric, there exist ranges of the field for which the order parameter vanishes along a line, parallel to the field. In many respects, the behavior of this line is qualitatively different from that of the vortices encountered in type II superconductivity. For samples with mirror symmetry, this flux-induced vortex appears at the thin side for small fluxes and at the opposite side for large fluxes. We propose direct and indirect experimental methods which could test our predictions.Comment: 6 pages, Latex, 4 figs., uses RevTex, extended to situations far from cylindrical symmetr

    Giant vortex state in perforated aluminum microsquares

    Full text link
    We investigate the nucleation of superconductivity in a uniform perpendicular magnetic field H in aluminum microsquares containing a few (2 and 4) submicron holes (antidots). The normal/superconducting phase boundary T_c(H) of these structures shows a quite different behavior in low and high fields. In the low magnetic field regime fluxoid quantization around each antidot leads to oscillations in T_c(H), expected from the specific sample geometry, and reminiscent of the network behavior. In high magnetic fields, the T_c(H) boundaries of the perforated and a reference non-perforated microsquare reveal cusps at the same values of Phi/Phi_0 (where Phi is the applied flux threading the total square area and Phi_0 is the superconducting flux quantum), while the background on T_c(H) becomes quasi-linear, indicating that a giant vortex state is established. The influence of the actual geometries on T_c(H) is analyzed in the framework of the linearized Ginzburg-Landau theory.Comment: 14 pages, 6 PS figures, RevTex, accepted for publication in Phys. Rev.

    Evolution of Galaxy Luminosity Function Using Photometric Redshifts

    Full text link
    We examine the impact of using photometric redshifts for studying the evolution of both the global galaxy luminosity function (LF) and that for different galaxy types. To this end we compare LFs obtained using photometric redshifts from the CFHT Legacy Survey (CFHTLS) D1 field with those from the spectroscopic survey VIMOS VLT Deep Survey (VVDS) comprising ~4800 galaxies. We find that for z<2, in the interval of magnitudes considered by this survey, the LFs obtained using photometric and spectroscopic redshifts show a remarkable agreement. This good agreement led us to use all four Deep fields of CFHTLS comprising ~386000 galaxies to compute the LF of the combined fields and estimate directly the error in the parameters based on field-to-field variation. We find that the characteristic absolute magnitude M* of Schechter fits fades by ~0.7mag from z~1.8 to z~0.3, while the characteristic density phi* increases by a factor of ~4 in the same redshift bin. We use the galaxy classification provided by the template fitting program used to compute photometric redshifts and split the sample into galaxy types. We find that these Schechter parameters evolve differently for each galaxy type, an indication that their evolution is a combination of several effects: galaxy merging, star formation quenching and mass assembly. All these results are compatible with those obtained by different spectroscopic surveys such as VVDS, DEEP2 and zCosmos, which reinforces the fact that photometric redshifts can be used to study galaxy evolution, at least for the redshift bins adopted so far. This is of great interest since future very large imaging surveys containing hundreds of millions of galaxies will allow to obtain important precise measurements to constrain the evolution of the LF and to explore the dependence of this evolution on morphology and/or color helping constrain the mechanisms of galaxy evolution.Comment: 29 pages, 10 figures. Approved for publication in The Astronomical Journa

    The VIMOS-VLT Deep Survey. The dependence of clustering on galaxy stellar mass at z~1

    Get PDF
    Aims: We use the VVDS-Deep first-epoch data to measure the dependence of galaxy clustering on galaxy stellar mass, at z~0.85. Methods: We measure the projected correlation function wp(rp) for sub-samples with 0.5<z<1.2 covering different mass ranges between 10^9 and 10^11 Msun. We quantify in detail the observational selection biases using 40 mock catalogues built from the Millennium run and semi-analytic models. Results: Our simulations indicate that serious incompleteness in mass is present only for log(M/Msun)<9.5. In the mass range log(M/Msun)=[9.0-9.5], the photometric selection function of the VVDS misses 2/3rd of the galaxies. The sample is virtually 100% complete above 10^10 Msun. We present the first direct evidence for a clear dependence of clustering on the galaxy stellar mass at z~0.85. The clustering length increases from r0 ~ 2.76 h^-1 Mpc for galaxies with mass M>10^9 Msun to r0 ~ 4.28 h^-1 Mpc for galaxies more massive than 10^10.5 Msun. At the same time, the slope increases from ~ 1.67 to ~ 2.28. A comparison of the observed wp(rp) to local measurements by the SDSS shows that the evolution is faster for objects less massive than ~10^10.5 Msun. This is interpreted as a higher dependence on redshift of the linear bias b_L for the more massive objects. While for the most massive galaxies b_L decreases from 1.5+/-0.2 at z~0.85 to 1.33+/-0.03 at z~0.15, the less massive population maintains a virtually constant value b_L~1.3. This result is in agreement with a scenario in which more massive galaxies formed at high redshift in the highest peaks of the density field, while less massive objects form at later epochs from the more general population of dark-matter halos.Comment: 13 pages, 10 figures, accepted in A&

    The zCOSMOS Survey. The dependence of clustering on luminosity and stellar mass at z=0.2-1

    Get PDF
    We study the dependence of galaxy clustering on luminosity and stellar mass at redshifts z ~ [0.2-1] using the first zCOSMOS 10K sample. We measure the redshift-space correlation functions xi(rp,pi) and its projection wp(rp) for sub-samples covering different luminosity, mass and redshift ranges. We quantify in detail the observational selection biases and we check our covariance and error estimate techniques using ensembles of semi-analytic mock catalogues. We finally compare our measurements to the cosmological model predictions from the mock surveys. At odds with other measurements, we find a weak dependence of galaxy clustering on luminosity in all redshift bins explored. A mild dependence on stellar mass is instead observed. At z~0.7, wp(rp) shows strong excess power on large scales. We interpret this as produced by large-scale structure dominating the survey volume and extending preferentially in direction perpendicular to the line-of-sight. We do not see any significant evolution with redshift of the amplitude of clustering for bright and/or massive galaxies. The clustering measured in the zCOSMOS data at 0.5<z<1 for galaxies with log(M/M_\odot)>=10 is only marginally consistent with predictions from the mock surveys. On scales larger than ~2 h^-1 Mpc, the observed clustering amplitude is compatible only with ~1% of the mocks. Thus, if the power spectrum of matter is LCDM with standard normalization and the bias has no unnatural scale-dependence, this result indicates that COSMOS has picked up a particularly rare, ~2-3 sigma positive fluctuation in a volume of ~10^6 h^-1 Mpc^3. These findings underline the need for larger surveys of the z~1 Universe to appropriately characterize the level of structure at this epoch.Comment: 18 pages, 21 figures, accepted for publication in Astronomy and Astrophysic
    • …
    corecore