1,695 research outputs found

    The GLAST Large Area Telescope Detector Performance Monitoring

    Get PDF

    Snowmass CF1 Summary: WIMP Dark Matter Direct Detection

    Get PDF
    As part of the Snowmass process, the Cosmic Frontier WIMP Direct Detection subgroup (CF1) has drawn on input from the Cosmic Frontier and the broader Particle Physics community to produce this document. The charge to CF1 was (a) to summarize the current status and projected sensitivity of WIMP direct detection experiments worldwide, (b) motivate WIMP dark matter searches over a broad parameter space by examining a spectrum of WIMP models, (c) establish a community consensus on the type of experimental program required to explore that parameter space, and (d) identify the common infrastructure required to practically meet those goals.Comment: Snowmass CF1 Final Summary Report: 47 pages and 28 figures with a 5 page appendix on instrumentation R&

    CDMSlite: A Search for Low-Mass WIMPs using Voltage-Assisted Calorimetric Ionization Detection in the SuperCDMS Experiment

    Get PDF
    SuperCDMS is an experiment designed to directly detect Weakly Interacting Massive Particles (WIMPs), a favored candidate for dark matter ubiquitous in the Universe. In this paper, we present WIMP-search results using a calorimetric technique we call CDMSlite, which relies on voltage- assisted Luke-Neganov amplification of the ionization energy deposited by particle interactions. The data were collected with a single 0.6 kg germanium detector running for 10 live days at the Soudan Underground Laboratory. A low energy threshold of 170 eVee (electron equivalent) was obtained, which allows us to constrain new WIMP-nucleon spin-independent parameter space for WIMP masses below 6 GeV/c2.Comment: 7 pages, 4 figure

    Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    Full text link
    The diffuse Galactic gamma-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess gamma-ray emission > 1 GeV relative to diffuse Galactic gamma-ray emission models consistent with directly measured CR spectra (the so-called ``EGRET GeV excess''). The excess emission was observed in all directions on the sky, and a variety of explanations have been proposed, including beyond-the-Standard-Model scenarios like annihilating or decaying dark matter. The Large Area Telescope (LAT) instrument on the Fermi Gamma-ray Space Telescope has measured the diffuse gamma-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements of the diffuse gamma-ray emission for energies 100 MeV to 10 GeV and Galactic latitudes 10 deg. <= |b| <= 20 deg. The LAT spectrum for this region of the sky is well reproduced by a diffuse Galactic gamma-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.Comment: 2 figures, 1 table, accepted by Physical Review Letters, available online Dec. 18th, 200

    Fermi Large Area Telescope Observations of the Cosmic-Ray Induced gamma-ray Emission of the Earth's Atmosphere

    Full text link
    We report on measurements of the cosmic-ray induced gamma-ray emission of Earth's atmosphere by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. The LAT has observed the Earth during its commissioning phase and with a dedicated Earth-limb following observation in September 2008. These measurements yielded 6.4 x 10^6 photons with energies >100MeV and ~250hours total livetime for the highest quality data selection. This allows the study of the spatial and spectral distributions of these photons with unprecedented detail. The spectrum of the emission - often referred to as Earth albedo gamma-ray emission - has a power-law shape up to 500 GeV with spectral index Gamma = 2.79+-0.06.Comment: Accepted for publication in PR

    Fermi LAT Observation of Diffuse Gamma-Rays Produced Through Interactions between Local Interstellar Matter and High Energy Cosmic Rays

    Full text link
    Observations by the Large Area Telescope (LAT) on the \textit{Fermi} mission of diffuse γ\gamma-rays in a mid-latitude region in the third quadrant (Galactic longitude ll from 200\arcdeg to 260\arcdeg and latitude b| b | from 22\arcdeg to 60\arcdeg) are reported. The region contains no known large molecular cloud and most of the atomic hydrogen is within 1 kpc of the solar system. The contributions of γ\gamma-ray point sources and inverse Compton scattering are estimated and subtracted. The residual γ\gamma-ray intensity exhibits a linear correlation with the atomic gas column density in energy from 100 MeV to 10 GeV. The measured integrated γ\gamma-ray emissivity is (1.63 \pm 0.05) \times 10^{-26} {\rm photons s^{-1} sr^{-1} H\mathchar`-atom^{-1}} and (0.66 \pm 0.02) \times 10^{-26} {\rm photons s^{-1} sr^{-1} H\mathchar`-atom^{-1}} above 100 MeV and above 300 MeV, respectively, with additional systematic error of 10\sim 10%. The differential emissivity in 100 MeV--10 GeV agrees with calculations based on cosmic ray spectra consistent with those directly measured, at the 10% level. The results obtained indicate that cosmic ray nuclei spectra within 1 kpc from the solar system in regions studied are close to the local interstellar spectra inferred from direct measurements at the Earth within 10\sim 10%.Comment: accepted for publication in the Astrophysical Journal. Revised according to the author proof.(correction of typos and minor revisions

    Fermi LAT Search for Photon Lines from 30 to 200 GeV and Dark Matter Implications

    Full text link
    Dark matter (DM) particle annihilation or decay can produce monochromatic γ\gamma-rays readily distinguishable from astrophysical sources. γ\gamma-ray line limits from 30 GeV to 200 GeV obtained from 11 months of Fermi Large Area Space Telescope data from 20-300 GeV are presented using a selection based on requirements for a γ\gamma-ray line analysis, and integrated over most of the sky. We obtain γ\gamma-ray line flux upper limits in the range 0.64.5×109cm2s10.6-4.5\times 10^{-9}\mathrm{cm}^{-2}\mathrm{s}^{-1}, and give corresponding DM annihilation cross-section and decay lifetime limits. Theoretical implications are briefly discussed.Comment: 6 pages, 1 figure. Accepted for publication by The Physical Review Letter

    Fermi/LAT discovery of gamma-ray emission from a relativistic jet in the narrow-line quasar PMN J0948+0022

    Get PDF
    We report the discovery by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope of high-energy gamma-ray emission from the peculiar quasar PMN J0948+0022 (z=0.5846). The optical spectrum of this object exhibits rather narrow Hbeta (FWHM(Hbeta) ~ 1500 km s^-1), weak forbidden lines and is therefore classified as a narrow-line type I quasar. This class of objects is thought to have relatively small black hole mass and to accrete at high Eddington ratio. The radio loudness and variability of the compact radio core indicates the presence of a relativistic jet. Quasi simultaneous radio-optical-X-ray and gamma-ray observations are presented. Both radio and gamma-ray emission (observed over 5-months) are strongly variable. The simultaneous optical and X-ray data from Swift show a blue continuum attributed to the accretion disk and a hard X-ray spectrum attributed to the jet. The resulting broad band spectral energy distribution (SED) and, in particular, the gamma-ray spectrum measured by Fermi are similar to those of more powerful FSRQ. A comparison of the radio and gamma-ray characteristics of PMN J0948+0022 with the other blazars detected by LAT shows that this source has a relatively low radio and gamma-ray power, with respect to other FSRQ. The physical parameters obtained from modelling the SED also fall at the low power end of the FSRQ parameter region discussed in Celotti & Ghisellini (2008). We suggest that the similarity of the SED of PMN J0948+0022 to that of more massive and more powerful quasars can be understood in a scenario in which the SED properties depend on the Eddington ratio rather than on the absolute power.Comment: 10 pages, 5 figures, accepted for publication on ApJ Main Journal. Corresponding author: L. Foschin
    corecore