7 research outputs found

    Prognostic value of combined fractional flow reserve and pressure-bounded coronary flow reserve: outcomes in FFR and Pb-CFR assessment

    No full text
    BACKGROUND: Coronary flow reserve (CFR) has an emerging role to predict outcome in patients with and without flow-limiting stenoses. However, the role of its surrogate pressure bounded-CFR (Pb-CFR) is controversial. We investigated the usefulness of combined use of fractional flow reserve (FFR) and Pb-CFR to predict outcomes. METHODS: This is a sub-study of the PROPHET-FFR Trial, including patients with chronic coronary syndrome and functionally tested coronary lesions. Patients were divided into four groups based on positive or negative FFR (cut-off 0.80) and preserved (lower boundary >= 2) or reduced (upper boundary = 2; Group 3 FFR >0.80/Pb-CFR0.80/Pb-CFR >= 2. Lesions with positive FFR were treated with PCI. Primary endpoint was the rate of major adverse cardiac events (MACEs), defined as a composite of death from any cause, myocardial infarction, target vessel revascularization, unplanned cardiac hospitalization at 36-months. RESULTS: A total of 609 patients and 816 lesions were available for the analysis. At Kaplan-Meier analysis MACEs rate was significantly different between groups (36.7% Group 1, 27.4% Group 2, 19.2% Group 3, 22.6% Group 4, P=0.019) and more prevalent in groups with FFR = 2 P=0.67).CONCLUSIONS: FFR confirms its ability to predict outcomes in patients with intermediate coronary stenoses. Pb-CFR does not add any relevant prognostic information

    Advanced Virgo Status

    Get PDF
    Abstract. The detection of a gravitational wave signal in September 2015 by LIGO interferometers, announced jointly by LIGO collaboration and Virgo collaboration in February 2016, opened a new era in Astrophysics and brought to the whole community a new way to look at - or “listen” to - the Universe. In this regard, the next big step was the joint observation with at least three detectors at the same time. This configuration provides a twofold benefit: it increases the signal-to-noise ratio of the events by means of triple coincidence and allows a narrower pinpointing of GW sources, and, in turn, the search for Electromagnetic counterparts to GW signals. Advanced Virgo (AdV) is the second generation of the gravitational-wave detector run by the Virgo collaboration. After a shut-down lasted 5 years for the upgrade, AdV has being commissioned to get back online and join the two advance LIGO (aLIGO) interferometers to realize the aforementioned scenario. We will describe the challenges and the status of the commissioning of AdV, and its current performances and perspectives. A few lines wil be also devoted to describe the latest achievements, occurred after the TAUP 2017 conference

    Erratum: “First Search for Gravitational Waves from Known Pulsars with Advanced LIGO” (2017, ApJ, 839, 12)

    No full text
    International audienc

    All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run

    No full text
    This paper presents the results of a search for generic short-duration gravitational-wave transients in data from the third observing run of Advanced LIGO and Advanced Virgo. Transients with durations of milliseconds to a few seconds in the 24–4096 Hz frequency band are targeted by the search, with no assumptions made regarding the incoming signal direction, polarization, or morphology. Gravitational waves from compact binary coalescences that have been identified by other targeted analyses are detected, but no statistically significant evidence for other gravitational wave bursts is found. Sensitivities to a variety of signals are presented. These include updated upper limits on the source rate density as a function of the characteristic frequency of the signal, which are roughly an order of magnitude better than previous upper limits. This search is sensitive to sources radiating as little as ∼10^−10 M⊙ c^2 in gravitational waves at ∼70 Hz from a distance of 10 kpc, with 50% detection efficiency at a false alarm rate of one per century. The sensitivity of this search to two plausible astrophysical sources is estimated: neutron star f modes, which may be excited by pulsar glitches, as well as selected core-collapse supernova models

    GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

    Get PDF
    International audienceThe second Gravitational-Wave Transient Catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15∶00 UTC and 1 October 2019 15∶00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibration and better subtraction of excess noise, which has been publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a probability of astrophysical origin greater than 0.5. Of these candidates, 36 have been reported in GWTC-2. We also calculate updated source properties for all binary black hole events previously reported in GWTC-1. If the eight additional high-significance candidates presented here are astrophysical, the mass range of events that are unambiguously identified as binary black holes (both objects ≥3M⊙) is increased compared to GWTC-2, with total masses from ∼14M⊙ for GW190924_021846 to ∼182M⊙ for GW190426_190642. Source properties calculated using our default prior suggest that the primary components of two new candidate events (GW190403_051519 and GW190426_190642) fall in the mass gap predicted by pair-instability supernova theory. We also expand the population of binaries with significantly asymmetric mass ratios reported in GWTC-2 by an additional two events (the mass ratio is less than 0.65 and 0.44 at 90% probability for GW190403_051519 and GW190917_114630 respectively), and find that two of the eight new events have effective inspiral spins χeff>0 (at 90% credibility), while no binary is consistent with χeff<0 at the same significance. We provide updated estimates for rates of binary black hole and binary neutron star coalescence in the local Universe

    All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data

    Get PDF
    This paper describes the first all-sky search for long-duration, quasimonochromatic gravitational-wave signals emitted by ultralight scalar boson clouds around spinning black holes using data from the third observing run of Advanced LIGO. We analyze the frequency range from 20 to 610 Hz, over a small frequency derivative range around zero, and use multiple frequency resolutions to be robust towards possible signal frequency wanderings. Outliers from this search are followed up using two different methods, one more suitable for nearly monochromatic signals, and the other more robust towards frequency fluctuations. We do not find any evidence for such signals and set upper limits on the signal strain amplitude, the most stringent being ≈10−25 at around 130 Hz. We interpret these upper limits as both an “exclusion region” in the boson mass/black hole mass plane and the maximum detectable distance for a given boson mass, based on an assumption of the age of the black hole/boson cloud system

    GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run

    Get PDF
    The third Gravitational-Wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019, 15∶00 Coordinated Universal Time (UTC) and 27 March 2020, 17∶00 UTC. There are 35 compact binary coalescence candidates identified by at least one of our search algorithms with a probability of astrophysical origin p_{astro}>0.5. Of these, 18 were previously reported as low-latency public alerts, and 17 are reported here for the first time. Based upon estimates for the component masses, our O3b candidates with p_{astro}>0.5 are consistent with gravitational-wave signals from binary black holes or neutron-star–black-hole binaries, and we identify none from binary neutron stars. However, from the gravitational-wave data alone, we are not able to measure matter effects that distinguish whether the binary components are neutron stars or black holes. The range of inferred component masses is similar to that found with previous catalogs, but the O3b candidates include the first confident observations of neutron-star–black-hole binaries. Including the 35 candidates from O3b in addition to those from GWTC-2.1, GWTC-3 contains 90 candidates found by our analysis with p_{astro}>0.5 across the first three observing runs. These observations of compact binary coalescences present an unprecedented view of the properties of black holes and neutron stars
    corecore