260 research outputs found

    The small satellite NINA-MITA to study galactic and solar cosmic rays in low-altitude polar orbit

    Get PDF
    Abstract The satellite MITA, carrying on board the scientific payload NINA-2, was launched on July the 15th, 2000 from the cosmodrome of Plesetsk (Russia) with a Cosmos-3M rocket. The satellite and the payload are currently operating within nominal parameters. NINA-2 is the first scientific payload for the technological flight of the Italian small satellite MITA. The detector used in this mission is identical to the one already flying on the Russian satellite Resurs-O1 n.4 in a 840-km sun-synchronous orbit, but makes use of the extensive computer and telemetry capabilities of MITA bus to improve the active data acquisition time. NINA physics objectives are to study cosmic nuclei from hydrogen to iron in the energy range between 10 MeV/n and 1 GeV/n during the years 2000–2003, that is the solar maximum period. The device is capable of charge identification up to iron with isotope sensitivity up to oxigen. The 87.3 degrees, 460 km altitude polar orbit allows investigations of cosmic rays of solar and galactic origin, so to study long and short term solar transient phenomena, and the study of the trapped radiation at higher geomagnetic cutoff

    THE SPACE TELESCOPE NINA: RESULTS OF A BEAM TEST CALIBRATION

    Get PDF
    Abstract In June 1998 the telescope NINA will be launched in space on board of the Russian satellite Resource-01 n.4. The main scientific objective of the mission is the study of the anomalous, galactic and solar components of the cosmic rays in the energy interval 10–200 MeV/n. The core of the instrument is a silicon detector whose performances have been tested with a particle beam at the GSI Laboratory in Germany in 1997; we report here on the results obtained during the beam calibration

    Light Isotope Abundances in Solar Energetic Particles measured by the Space Instrument NINA

    Get PDF
    This article reports nine Solar Energetic Particle events detected by the instrument NINA between October 1998 and April 1999. NINA is a silicon-based particle detector mounted on-board the Russian satellite Resurs-01-N4, which has flown at an altitude of about 800 km in polar inclination since July 1998. For every solar event the power-law He4 spectrum across the energy interval 10--50 MeV/n was reconstructed, and spectral indexes, gamma, from 1.8 to 6.8 extracted. Data of He3 and He4 were used to determine the He3/He4 ratio, that for some SEP events indicated an enrichment in He3. For the 1998 November 7 event the ratio reached a maximum value of 0.33+- 0.06, with spectral indexes of gamma = 2.5 +- 0.6 and gamma = 3.7 +- 0.3 for He3 and He4, respectively. The He3/He4 ratio averaged over the remaining events was 0.011 +- 0.004. For all events the deuterium-to-proton ratio was determined. The average value over all events was (3.9+-1.4) 10^{-5} across the energy interval 9--12 MeV/n. For one event (1998 November 24) this ratio yielded approximately 10 times higher than normal coronal values. Upper limits on the H3/H1 counting ratio for all events were determined. For the 1998 November 14 SEP event the high flux of heavy particles detected made it possible to reconstruct the carbon and oxygen flux.Comment: 42 pages, 14 figures, submitted to Journal of Geophysical Researc

    In-Orbit Performance of the Space Telescope NINA and GCR Flux Measurements

    Full text link
    The NINA apparatus, on board the Russian satellite Resurs-01 n.4, has been in polar orbit since 1998 July 10, at an altitude of 840 km. Its main scientific task is to study the galactic, solar and anomalous components of cosmic rays in the energy interval 10--200 MeV/n. In this paper we present a description of the instrument and its basic operating modes. Measurements of Galactic Cosmic Ray spectra will also be shown.Comment: 38 pages, 10 figures, accepted for publication in the ApJ

    Two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/388

    Evolutionary Conservation of the Functional Modularity of Primate and Murine LINE-1 Elements

    Get PDF
    LINE-1 (L1) retroelements emerged in mammalian genomes over 80 million years ago with a few dominant subfamilies amplifying over discrete time periods that led to distinct human and mouse L1 lineages. We evaluated the functional conservation of L1 sequences by comparing retrotransposition rates of chimeric human-rodent L1 constructs to their parental L1 counterparts. Although amino acid conservation varies from ∼35% to 63% for the L1 ORF1p and ORF2p, most human and mouse L1 sequences can be functionally exchanged. Replacing either ORF1 or ORF2 to create chimeric human-mouse L1 elements did not adversely affect retrotransposition. The mouse ORF2p retains retrotransposition-competency to support both Alu and L1 mobilization when any of the domain sequences we evaluated were substituted with human counterparts. However, the substitution of portions of the mouse cys-domain into the human ORF2p reduces both L1 retrotransposition and Alu trans-mobilization by 200–1000 fold. The observed loss of ORF2p function is independent of the endonuclease or reverse transcriptase activities of ORF2p and RNA interaction required for reverse transcription. In addition, the loss of function is physically separate from the cysteine-rich motif sequence previously shown to be required for RNP formation. Our data suggest an additional role of the less characterized carboxy-terminus of the L1 ORF2 protein by demonstrating that this domain, in addition to mediating RNP interaction(s), provides an independent and required function for the retroelement amplification process. Our experiments show a functional modularity of most of the LINE sequences. However, divergent evolution of interactions within L1 has led to non-reciprocal incompatibilities between human and mouse ORF2 cys-domain sequences

    Characterization of LINE-1 Ribonucleoprotein Particles

    Get PDF
    The average human genome contains a small cohort of active L1 retrotransposons that encode two proteins (ORF1p and ORF2p) required for their mobility (i.e., retrotransposition). Prior studies demonstrated that human ORF1p, L1 RNA, and an ORF2p-encoded reverse transcriptase activity are present in ribonucleoprotein (RNP) complexes. However, the inability to physically detect ORF2p from engineered human L1 constructs has remained a technical challenge in the field. Here, we have employed an epitope/RNA tagging strategy with engineered human L1 retrotransposons to identify ORF1p, ORF2p, and L1 RNA in a RNP complex. We next used this system to assess how mutations in ORF1p and/or ORF2p impact RNP formation. Importantly, we demonstrate that mutations in the coiled-coil domain and RNA recognition motif of ORF1p, as well as the cysteine-rich domain of ORF2p, reduce the levels of ORF1p and/or ORF2p in L1 RNPs. Finally, we used this tagging strategy to localize the L1–encoded proteins and L1 RNA to cytoplasmic foci that often were associated with stress granules. Thus, we conclude that a precise interplay among ORF1p, ORF2p, and L1 RNA is critical for L1 RNP assembly, function, and L1 retrotransposition
    • …
    corecore