199 research outputs found

    Relation of the chondromalatia patellae to proximal tibial anatomical parameters, assessed with MRI

    Get PDF
    Magnetic resonance imaging (MRI) is a non-invasive highly sensitive tool for diagnosing chondromalacia patellae in the early stages. Many studies have evaluated patellar and trochlear morphology with different radiologic indices. We aimed to assess the discriminative power of tibial, patellar, and femoral indices in MRI for chondromalacia patellae. 100 cases of chondromalacia, as well as 100 age-matched controls among the patients who underwent knee MRI between February 2017 and March 2019, were included. The standard protocol of knee MRI was applied and the diagnosis of chondromalacia was made on MRI findings. Chondromalacia subjects were also classified as grade 1 to 4 according to the Modified Outerbridge's MRI grading system. We measured 25 MRI parameters in the knee and adjacent structures to determine the relation between chondromalacia patellae and anatomical MRI parameters. Tibial slope, trochlear depth, lateral trochlear inclination, and lateral patellar tilt angle had significant correlation with chondromalacia. Any increase in lateral trochlear inclination and lateral patellar tilt angle could increase the probability of the disease (Odds ratio OR 1.15, 1.13; 95% CI: 1.03-1.30; 1.02-1.26, respectively), while any increase in medial tibial slope and trochlear depth could decrease the probability of chondromalacia (OR 0.85, 0.06; 95% CI: 0.73-0.98, 0.02-0.17, respectively). We also designed a model for the severity of disease by using the patellar height index (relative odds ratio: 75.9). The result of this study showed the novelty role of tibial anatomy in developing chondromalacia and its mechanism. We also concluded that patellar height might be an important factor in defining disease severity. © 2020 2020 Mohammadreza Tabary, Azadehsadat Esfahani, Mehdi Nouraie, Mohammad Reza Babaei, Ali Reza Khoshdel, Farnaz Araghi, Mostafa Shahrezaee, published by Sciendo

    The CAT Imaging Telescope for Very-High-Energy Gamma-Ray Astronomy

    Get PDF
    The CAT (Cherenkov Array at Themis) imaging telescope, equipped with a very-high-definition camera (546 fast phototubes with 0.12 degrees spacing surrounded by 54 larger tubes in two guard rings) started operation in Autumn 1996 on the site of the former solar plant Themis (France). Using the atmospheric Cherenkov technique, it detects and identifies very high energy gamma-rays in the range 250 GeV to a few tens of TeV. The instrument, which has detected three sources (Crab nebula, Mrk 421 and Mrk 501), is described in detail.Comment: 24 pages, 15 figures. submitted to Elsevier Preprin

    Background Light in Potential Sites for the ANTARES Undersea Neutrino Telescope

    Get PDF
    The ANTARES collaboration has performed a series of {\em in situ} measurements to study the background light for a planned undersea neutrino telescope. Such background can be caused by 40^{40}K decays or by biological activity. We report on measurements at two sites in the Mediterranean Sea at depths of 2400~m and 2700~m, respectively. Three photomultiplier tubes were used to measure single counting rates and coincidence rates for pairs of tubes at various distances. The background rate is seen to consist of three components: a constant rate due to 40^{40}K decays, a continuum rate that varies on a time scale of several hours simultaneously over distances up to at least 40~m, and random bursts a few seconds long that are only correlated in time over distances of the order of a meter. A trigger requiring coincidences between nearby photomultiplier tubes should reduce the trigger rate for a neutrino telescope to a manageable level with only a small loss in efficiency.Comment: 18 pages, 8 figures, accepted for publication in Astroparticle Physic

    Abnormal spatial diffusion of Ca2+ in F508del-CFTR airway epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In airway epithelial cells, calcium mobilization can be elicited by selective autocrine and/or paracrine activation of apical or basolateral membrane heterotrimeric G protein-coupled receptors linked to phospholipase C (PLC) stimulation, which generates inositol 1,4,5-trisphosphate (IP<sub>3</sub>) and 1,2-diacylglycerol (DAG) and induces Ca<sup>2+ </sup>release from endoplasmic reticulum (ER) stores.</p> <p>Methods</p> <p>In the present study, we monitored the cytosolic Ca<sup>2+ </sup>transients using the UV light photolysis technique to uncage caged Ca<sup>2+ </sup>or caged IP<sub>3 </sub>into the cytosol of loaded airway epithelial cells of cystic fibrosis (CF) and non-CF origin. We compared in these cells the types of Ca<sup>2+ </sup>receptors present in the ER, and measured their Ca<sup>2+ </sup>dependent activity before and after correction of F508del-CFTR abnormal trafficking either by low temperature or by the pharmacological corrector miglustat (N-butyldeoxynojirimycin).</p> <p>Results</p> <p>We showed reduction of the inositol 1,4,5-trisphosphate receptors (IP<sub>3</sub>R) dependent-Ca<sup>2+ </sup>response following both correcting treatments compared to uncorrected cells in such a way that Ca<sup>2+ </sup>responses (CF+treatment <it>vs </it>wild-type cells) were normalized. This normalization of the Ca<sup>2+ </sup>rate does not affect the activity of Ca<sup>2+</sup>-dependent chloride channel in miglustat-treated CF cells. Using two inhibitors of IP<sub>3</sub>R1, we observed a decrease of the implication of IP<sub>3</sub>R1 in the Ca<sup>2+ </sup>response in CF corrected cells. We observed a similar Ca<sup>2+ </sup>mobilization between CF-KM4 cells and CFTR-cDNA transfected CF cells (CF-KM4-reverted). When we restored the F508del-CFTR trafficking in CFTR-reverted cells, the specific IP<sub>3</sub>R activity was also reduced to a similar level as in non CF cells. At the structural level, the ER morphology of CF cells was highly condensed around the nucleus while in non CF cells or corrected CF cells the ER was extended at the totality of cell.</p> <p>Conclusion</p> <p>These results suggest reversal of the IP<sub>3</sub>R dysfunction in F508del-CFTR epithelial cells by correction of the abnormal trafficking of F508del-CFTR in cystic fibrosis cells. Moreover, using CFTR cDNA-transfected CF cells, we demonstrated that abnormal increase of IP<sub>3</sub>R Ca<sup>2+ </sup>release in CF human epithelial cells could be the consequence of F508del-CFTR retention in ER compartment.</p

    Relation of exaggerated cytokine responses of CF airway epithelial cells to PAO1 adherence

    Get PDF
    In many model systems, cystic fibrosis (CF) phenotype airway epithelial cells in culture respond to P. aeruginosa with greater interleukin (IL)-8 and IL-6 secretion than matched controls. In order to test whether this excess inflammatory response results from the reported increased adherence of P. aeruginosa to the CF cells, we compared the inflammatory response of matched pairs of CF and non CF airway epithelial cell lines to the binding of GFP-PAO1, a strain of pseudomonas labeled with green fluorescent protein. There was no clear relation between GFP-PAO1 binding and cytokine production in response to PAO1. Treatment with exogenous aGM1 resulted in greater GFP-PAO1 binding to the normal phenotype compared to CF phenotype cells, but cytokine production remained greater from the CF cell lines. When cells were treated with neuraminidase, PAO1 adherence was equalized between CF and nonCF phenotype cell lines, but IL-8 production in response to inflammatory stimuli was still greater in CF phenotype cells. The polarized cell lines 16HBEo-Sense (normal phenotype) and Antisense (CF phenotype) cells were used to test the effect of disrupting tight junctions, which allows access of PAO1 to basolateral binding sites in both cell lines. IL-8 production increased from CF, but not normal, cells. These data indicate that increased bacterial binding to CF phenotype cells cannot by itself account for excess cytokine production in CF airway epithelial cells, encourage investigation of alternative hypotheses, and signal caution for therapeutic strategies proposed for CF that include disruption of tight junctions in the face of pseudomonas infection

    Azithromycin reduces spontaneous and induced inflammation in ΔF508 cystic fibrosis mice

    Get PDF
    BACKGROUND: Inflammation plays a critical role in lung disease development and progression in cystic fibrosis. Azithromycin is used for the treatment of cystic fibrosis lung disease, although its mechanisms of action are poorly understood. We tested the hypothesis that azithromycin modulates lung inflammation in cystic fibrosis mice. METHODS: We monitored cellular and molecular inflammatory markers in lungs of cystic fibrosis mutant mice homozygous for the ΔF508 mutation and their littermate controls, either in baseline conditions or after induction of acute inflammation by intratracheal instillation of lipopolysaccharide from Pseudomonas aeruginosa, which would be independent of interactions of bacteria with epithelial cells. The effect of azithromycin pretreatment (10 mg/kg/day) given by oral administration for 4 weeks was evaluated. RESULTS: In naive cystic fibrosis mice, a spontaneous lung inflammation was observed, characterized by macrophage and neutrophil infiltration, and increased intra-luminal content of the pro-inflammatory cytokine macrophage inflammatory protein-2. After induced inflammation, cystic fibrosis mice combined exaggerated cellular infiltration and lower anti-inflammatory interleukin-10 production. In cystic fibrosis mice, azithromycin attenuated cellular infiltration in both baseline and induced inflammatory condition, and inhibited cytokine (tumor necrosis factor-α and macrophage inflammatory protein-2) release in lipopolysaccharide-induced inflammation. CONCLUSION: Our findings further support the concept that inflammatory responses are upregulated in cystic fibrosis. Azithromycin reduces some lung inflammation outcome measures in cystic fibrosis mice. We postulate that some of the benefits of azithromycin treatment in cystic fibrosis patients are due to modulation of lung inflammation

    Role of CFTR expressed by neutrophils in modulating acute lung inflammation and injury in mice

    Get PDF
    Objective and designCystic fibrosis transmembrane conductance regulator (CFTR) regulates infection and inflammation. In this study, we investigated whether a lack of functional CFTR in neutrophils would promote lipopolysaccharide (LPS)-induced lung inflammation and injury.Materials and methodsCFTR-inhibited or F508del-CFTR-mutated neutrophils were stimulated with LPS and cultured to evaluate production of cytokines and NF-κB activation. Wild-type mice were reconstituted with F508del neutrophils or bone marrow and then intratracheally challenged with LPS to observe lung inflammatory response.ResultsPharmacologic inhibition and genetic mutation of CFTR in neutrophils activated NF-κB and facilitated macrophage inflammatory protein-2 (MIP-2) and tumor necrosis factor-α (TNF-α) production. Wild-type mice reconstituted with F508del neutrophils and bone marrow had more severe lung inflammation and injury after LPS challenge compared to wild-type mice receiving wild-type neutrophils or bone marrow reconstitution.ConclusionsLack of functional CFTR in neutrophils can promote LPS-induced acute lung inflammation and injury

    Does long-term passive stretching alter muscle-tendon unit mechanics in children with spastic cerebral palsy?

    Get PDF
    Background: Cerebral palsy causes motor impairments during development and many children may experience excessive neural and mechanical muscle stiffness. The clinical assumption is that excessive stiffness is thought to be one of the main reasons for functional impairments in cerebral palsy. As such, passive stretching is widely used to reduce stiffness, with a view to improving function. However, current research evidence on passive stretching in cerebral palsy is not adequate to support or refute the effectiveness of stretching as a management strategy to reduce stiffness and/or improve function. The purpose was to identify the effect of six weeks passive ankle stretching on muscle–tendon unit parameters in children with spastic cerebral palsy. Methods: Thirteen children (8–14 y) with quadriplegic/diplegic cerebral palsy were randomly assigned to either an experimental group (n=7) or a control group (n=6). The experimental group underwent an additional six weeks of passive ankle dorsiflexion stretching for 15 min (per leg), four days per week, whilst the control group continued with their normal routine, which was similar for the two groups. Measures of muscle and tendon stiffness, strain and resting length were acquired pre- and post-intervention. Findings: The experimental group demonstrated a 3° increase in maximum ankle dorsiflexion. This was accompanied by a 13% reduction in triceps surae muscle stiffness, with no change in tendon stiffness. Additionally, there was an increase in fascicle strain with no changes in resting length, suggesting muscle stiffness reductions were a result of alterations in intra/extra-muscular connective tissue. Interpretation: The results demonstrate that stretching can reduce muscle stiffness by altering fascicle strain but not resting fascicle length

    DNA demethylation-dependent enhancement of toll-like receptor-2 gene expression in cystic fibrosis epithelial cells involves SP1-activated transcription

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The clinical course of cystic fibrosis (CF) is characterized by recurrent pulmonary infections and chronic inflammation. We have recently shown that decreased methylation of the toll-like receptor-2 (TLR2) promoter leads to an apparent CF-related up-regulation of TLR2. This up-regulation could be responsible, in part, for the CF-associated enhanced proinflammatory responses to various bacterial products in epithelial cells. However, the molecular mechanisms underlying DNA hypomethylation-dependent enhancement of TLR2 expression in CF cells remain unknown.</p> <p>Results</p> <p>The present study indicates that there is a specific CpG region (CpG#18-20), adjacent to the SP1 binding site that is significantly hypomethylated in several CF epithelial cell lines. These CpGs encompass a minimal promoter region required for basal TLR2 expression, and suggests that CpG#18-20 methylation regulates TLR2 expression in epithelial cells. Furthermore, reporter gene analysis indicated that the SP1 binding site is involved in the methylation-dependent regulation of the TLR2 promoter. Inhibition of SP1 with mithramycin A decreased TLR2 expression in both CF and 5-azacytidine-treated non-CF epithelial cells. Moreover, even though SP1 binding was not affected by CpG methylation, SP1-dependent transcription was abolished by CpG methylation.</p> <p>Conclusion</p> <p>This report implicates SP1 as a critical component of DNA demethylation-dependent up-regulation of TLR2 expression in CF epithelial cells.</p
    corecore