368 research outputs found

    Elastin haploinsufficiency induces alternative aging processes in the aorta

    Get PDF
    Elastin, the main component of elastic fibers, is synthesized only in early life and provides the blood vessels with their elastic properties. With aging, elastin is progressively degraded, leading to arterial enlargement, stiffening, and dysfunction. Also, elastin is a key regulator of vascular smooth muscle cell proliferation and migration during development since heterozygous mutations in its gene (Eln) are responsible for a severe obstructive vascular disease, supravalvular aortic stenosis, isolated or associated to Williams syndrome. Here, we have studied whether early elastin synthesis could also influence the aging processes, by comparing the structure and function of ascending aorta from 6- and 24-month-old Eln+/- and Eln+/+ mice. Eln+/- animals have high blood pressure and arteries with smaller diameters and more rigid walls containing additional although thinner elastic lamellas. Nevertheless, longevity of these animals is unaffected. In young adult Eln+/- mice, some features resemble vascular aging of wild-type animals: cardiac hypertrophy, loss of elasticity of the arterial wall through enhanced fragmentation of the elastic fibers, and extracellular matrix accumulation in the aortic wall, in particular in the intima. In Eln+/- animals, we also observed an age-dependent alteration of endothelial vasorelaxant function. On the contrary, Eln+/- mice were protected from several classical consequences of aging visible in aged Eln+/+ mice, such as arterial wall thickening and alteration of alpha(1)-adrenoceptor-mediated vasoconstriction. Our results suggest that early elastin expression and organization modify arterial aging through their impact on both vascular cell physiology and structure and mechanics of blood vessels

    Emergency surgery for splenic flexure cancer: results of the SFC Study Group database

    Get PDF
    Background: The effectiveness of surgical treatment for splenic flexure carcinomas (SFCs) in emergency settings remains unexplored. This study aims to compare the perioperative and long-term outcomes of different alternatives for emergency SFC resection. Method: This multicenter retrospective study was based on the SFC Study Group database. For the present analysis, SFC patients were selected if they had received emergency surgical resection with curative intent between 2000 and 2018. Extended right colectomy (ERC), left colectomy (LC), and segmental left colectomy (SLC) were evaluated and compared. Results: The study sample was composed of 90 SFC patients who underwent emergency ERC (n = 55, 61.1%), LC (n = 18, 20%), or SLC (n = 17, 18.9%). Bowel obstruction was the most frequent indication for surgery (n = 75, 83.3%), and an open approach was chosen in 81.1% of the patients. A higher incidence of postoperative complications was observed in the ERC group (70.9%) than in the LC (44.4%) and SLC groups (47.1%), with a significant procedure-related difference for severe postoperative complications (Dindo-Clavien ≥ III; adjusted odds ratio for ERC vs. LC:7.23; 95% CI 1.51-34.66; p = 0.013). Anastomotic leakage occurred in 8 (11.2%) patients, with no differences between the groups (p = 0.902). R0 resection was achieved in 98.9% of the procedures, and ≥ 12 lymph nodes were retrieved in 92.2% of patients. Overall and disease-free survival rates at 5 years were similar between the groups and were significantly associated with stage pT4 and the presence of synchronous metastases. Conclusion: In the emergency setting, ERC and open surgery are the most frequently performed procedures. ERC is associated with increased odds of severe postoperative complications when compared to more conservative SFC resections. Nonetheless, all the alternatives seem to provide similar pathologic and long-term outcomes, supporting the oncological safety of more conservative resections for emergency SFCs

    Drosophila Neurotrophins Reveal a Common Mechanism for Nervous System Formation

    Get PDF
    Neurotrophic interactions occur in Drosophila, but to date, no neurotrophic factor had been found. Neurotrophins are the main vertebrate secreted signalling molecules that link nervous system structure and function: they regulate neuronal survival, targeting, synaptic plasticity, memory and cognition. We have identified a neurotrophic factor in flies, Drosophila Neurotrophin (DNT1), structurally related to all known neurotrophins and highly conserved in insects.By investigating with genetics the consequences of removing DNT1 or adding it in excess, we show that DNT1 maintains neuronal survival, as more neurons die in DNT1 mutants and expression of DNT1 rescues naturally occurring cell death, and it enables targeting by motor neurons. We show that Spa¨ tzle and a further fly neurotrophin superfamily member, DNT2, also have neurotrophic functions in flies. Our findings imply that most likely a neurotrophin was present in the common ancestor of all bilateral organisms, giving rise to invertebrate and vertebrate neurotrophins through gene or whole-genome duplications. This work provides a missing link between aspects of neuronal function in flies and vertebrates, and it opens the opportunity to use Drosophila to investigate further aspects of neurotrophin function and to model related diseases

    Chronic tooth pulp inflammation induces persistent expression of phosphorylated ERK (pERK) and phosphorylated p38 (pp38) in trigeminal subnucleus caudalis

    Get PDF
    Background: Extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase are transiently phosphorylated (activated) in the spinal cord and trigeminal nucleus by acute noxious stimuli. Acute stimulation of dental pulp induces short-lived ERK activation in trigeminal subnucleus caudalis (Vc), and p38 inhibition attenuates short-term sensitization in Vc induced by acute pulpal stimulation. We have developed a model to study central changes following chronic inflammation of dental pulp that induces long-term sensitization. Here, we examine the effects of chronic inflammation and acute stimulation on the expression of phosphorylated ERK (pERK), phosphorylated p38 (pp38) and Fos in Vc. Results: Chronic inflammation alone induced bilateral expression of pERK and pp38 in Vc, but did not induce Fos expression. Stimulation of both non-inflamed and inflamed pulps significantly increased pERK and pp38 bilaterally; expression was greatest in inflamed, stimulated animals, and was similar following 10-min and 60-min stimulation. Stimulation for 60 min, but not 10 min, induced Fos in ipsilateral Vc; Fos expression was significantly greater in inflamed, stimulated animals. pERK was present in both neurons and astrocytes; pp38 was present in neurons and other non-neuronal, non-astrocytic cell types. Conclusions: This study provides the first demonstration that chronic inflammation of tooth pulp induces persistent bilateral activation of ERK and p38 within Vc, and that this activation is further increased by acute stimulation. This altered activity in intracellular signaling is likely to be linked to the sensitization that is seen in our animal model and in patients with pulpitis. Our data indicate that pERK and pp38 are more accurate markers of central change than Fos expression. In our model, localization of pERK and pp38 within specific cell types differs from that seen following acute stimulation. This may indicate specific roles for different cell types in the induction and maintenance of pulpitic and other types of pain

    Effects of prolonged and acute muscle pain on the force control strategy during isometric contractions

    Get PDF
    Musculoskeletal pain is associated with multiple adaptions in movement control. This study aimed to determine whether changes in movement control acquired during acute pain are maintained over days of pain exposure. On day 0, the extensor carpi radialis brevis muscle of healthy participants was injected with nerve growth factor (NGF) to induce persistent movement-evoked pain (n\ua0=\ua013) or isotonic saline as a control (n\ua0=\ua013). On day 2, short-lasting pain was induced by injection of hypertonic saline into extensor carpi radialis brevis muscles of all participants. Three-dimensional force components were recorded during submaximal isometric wrist extensions on day 0, day 4, and before, during, and after saline-induced pain on day 2. Standard deviation (variation of task-related force) and total excursion of center of pressure (variation of force direction) were assessed. Maximal movement-evoked pain was 3.3\ua0±\ua0.4 (0–10 numeric scale) in the NGF-group on day 2 whereas maximum saline-induced pain was 6.8\ua0±\ua0.3\ua0cm (10-cm visual analog scale). The difference in centroid position of force direction relative to day 0 was greater in the NGF group than in the control group (P\ua

    Brain-Derived Neurotrophic Factor Gene Val66Met Polymorphism Modulates Reversible Cerebral Vasoconstriction Syndromes

    Get PDF
    BACKGROUND: Reversible cerebral vasoconstriction syndrome (RCVS) could be complicated by cerebral ischemic events. Hypothetical mechanisms of RCVS involve endothelial dysfunction and sympathetic overactivity, both of which were reported to be related to brain-derived neurotrophic factor (BDNF). The study investigated the association between functional BDNF Val66Met polymorphism and RCVS. METHODS: Patients with RCVS and controls were prospectively recruited and genotyped for the BDNF Val66Met polymorphism. Magnetic resonance angiography (MRA) and transcranial color-coded Doppler sonography were employed to evaluate cerebral vasoconstriction. Genotyping results, clinical parameters, vasoconstriction scores, mean flow velocities of the middle cerebral artery (V(MCA)), and Lindegaard indices were analyzed. Split-sample approach was employed to internally validate the data. PRINCIPAL FINDINGS: Ninety Taiwanese patients with RCVS and 180 age- and gender-matched normal controls of the same ethnicity completed the study. The genotype frequencies did not differ between patients and controls. Compared to patients with Met/Met homozygosity, patients with Val allele had higher mean vasoconstriction scores of all arterial segments (1.60±0.72 vs. 0.87±0.39, p<0.001), V(MCA) values (116.7±36.2 vs. 82.7±17.9 cm/s, p<0.001), and LI (2.41±0.91 vs. 1.89±0.41, p = 0.001). None of the Met/Met homozygotes, but 38.9% of the Val carriers, had V(MCA) values of >120 cm/s (p<0.001). Split-sample validation by randomization, age, entry time or residence of patients demonstrated concordant findings. CONCLUSIONS: Our findings link BDNF Val66Met polymorphism with the severity of RCVS for the first time and implicate possible pathogenic mechanisms for vasoconstriction in RCVS
    corecore