228 research outputs found

    Effects of tcpB Mutations on Biogenesis and Function of the Toxin-Coregulated Pilus, the Type IVb Pilus of Vibrio cholerae

    Get PDF
    Vibrio cholerae is the etiological agent of the acute intestinal disorder cholera. The toxin-coregulated pilus (TCP), a type IVb pilus, is an essential virulence factor of V. cholerae. Recent work has shown TcpB is a large minor pilin encoded within the tcp operon. TcpB contributes to efficient pilus formation and is essential for all TCP functions. Here we have initiated a detailed, targeted mutagenesis approach to further characterize this salient TCP component. We have identified (thus far) 20 residues of TcpB, which affect either the steady state level of TcpB or alter one or more TCP functions. This study provides the solid framework for further understanding of the complex role of TcpB and will be of use upon determination of the crystal structure of TcpB or related minor pilin orthologs of type IVb pilus systems

    A user’s guide to golden gate cloning methods and standards

    Get PDF
    The continual demand for specialized molecular cloning techniques that suit a broad range of applications has driven the development of many different cloning strategies. One method that has gained significant traction is Golden Gate assembly, which achieves hierarchical assembly of DNA parts by utilizing Type IIS restriction enzymes to produce user-specified sticky ends on cut DNA fragments. This technique has been modularized and standardized, and includes different subfamilies of methods, the most widely adopted of which are the MoClo and Golden Braid standards. Moreover, specialized toolboxes tailored to specific applications or organisms are also available. Still, the quantity and range of assembly methods can constitute a barrier to adoption for new users, and even experienced scientists might find it difficult to discern which tools are best suited toward their goals. In this review, we provide a beginner-friendly guide to Golden Gate assembly, compare the different available standards, and detail the specific features and quirks of commonly used toolboxes. We also provide an update on the state-of-the-art in Golden Gate technology, discussing recent advances and challenges to inform existing users and promote standard practices

    The Vibrio cholerae Minor Pilin TcpB Initiates Assembly and Retraction of the Toxin- Coregulated Pilus

    Full text link
    Type IV pilus (T4P) systems are complex molecular machines that polymerize major pilin proteins into thin filaments displayed on bacterial surfaces. Pilus functions require rapid extension and depolymerization of the pilus, powered by the assembly and retraction ATPases, respectively. A set of low abundance minor pilins influences pilus dynamics by unknown mechanisms. The Vibrio cholerae toxin-coregulated pilus (TCP) is among the simplest of the T4P systems, having a single minor pilin TcpB and lacking a retraction ATPase. Here we show that TcpB, like its homolog CofB, initiates pilus assembly. TcpB co-localizes with the pili but at extremely low levels, equivalent to one subunit per pilus. We used a micropillars assay to demonstrate that TCP are retractile despite the absence of a retraction ATPase, and that retraction relies on TcpB, as a V. cholerae tcpB Glu5Val mutant is fully piliated but does not induce micropillars movements. This mutant is impaired in TCP-mediated autoagglutination and TcpF secretion, consistent with retraction being required for these functions. We propose that TcpB initiates pilus retraction by incorporating into the growing pilus in a Glu5-dependent manner, which stalls assembly and triggers processive disassembly. These results provide a framework for understanding filament dynamics in more complex T4P systems and the closely related Type II secretion system

    Individual variation in levels of haptoglobin-related protein in children from Gabon

    Get PDF
    Background: Haptoglobin related protein (Hpr) is a key component of trypanosome lytic factors (TLF), a subset of highdensity lipoproteins (HDL) that form the first line of human defence against African trypanosomes. Hpr, like haptoglobin (Hp) can bind to hemoglobin (Hb) and it is the Hpr-Hb complexes which bind to these parasites allowing uptake of TLF. This unique form of innate immunity is primate-specific. To date, there have been no population studies of plasma levels of Hpr, particularly in relation to hemolysis and a high prevalence of ahaptoglobinemia as found in malaria endemic areas. Methods and Principal Findings: We developed a specific enzyme-linked immunosorbent assay to measure levels of plasma Hpr in Gabonese children sampled during a period of seasonal malaria transmission when acute phase responses (APR), malaria infection and associated hemolysis were prevalent. Median Hpr concentration was 0.28 mg/ml (range 0.03-1.1). This was 5-fold higher than that found in Caucasian children (0.049 mg/ml, range 0.002-0.26) with no evidence of an APR. A general linear model was used to investigate associations between Hpr levels, host polymorphisms, parasitological factors and the acute phase proteins, Hp, C-reactive protein (CRP) and albumin. Levels of Hpr were associated with Hp genotype, decreased with age and were higher in females. Hpr concentration was strongly correlated with that of Hp, but not CRP

    The bacterial stressosome:a modular system that has been adapted to control secondary messenger signaling

    Get PDF
    SummaryThe stressosome complex regulates downstream effectors in response to environmental signals. In Bacillus subtilis, it activates the alternative sigma factor σB, leading to the upregulation of the general stress regulon. Herein, we characterize a stressosome-regulated biochemical pathway in Moorella thermoacetica. We show that the presumed sensor, MtR, and the scaffold, MtS, form a pseudo-icosahedral structure like that observed in B. subtilis. The N-terminal domain of MtR is structurally homologous to B. subtilis RsbR, despite low sequence identity. The affinity of the switch kinase, MtT, for MtS decreases following MtS phosphorylation and not because of structural reorganization. Dephosphorylation of MtS by the PP2C type phosphatase MtX permits the switch kinase to rebind the stressosome to reset the response. We also show that MtT regulates cyclic di-GMP biosynthesis through inhibition of a GG(D/E)EF-type diguanylate cyclase, demonstrating that secondary messenger levels are regulated by the stressosome

    Antidiabetic and renoprotective effects of the chloroform extract of Terminalia chebula Retz. seeds in streptozotocin-induced diabetic rats

    Get PDF
    BACKGROUND: Terminalia chebula (Combretaceae) has been widely used in Ayurveda for the treatment of diabetes. In the present investigation, the chloroform extract of T. chebula seed powder was investigated for its antidiabetic activity in streptozotocin-induced diabetic rats using short term and long term study protocols. The efficacy of the extract was also evaluated for protection of renal functions in diabetic rats. METHODS: The blood glucose lowering activity of the chloroform extract was determined in streptozotocin-induced (75 mg/kg, i.p.; dissolved in 0.1 M acetate buffer; pH 4.5) diabetic rats, after oral administration at the doses of 100, 200 and 300 mg/kg in short term study. Blood samples were collected from the eye retro-orbital plexus of rats before and also at 0.5, 1, 2, 4, 6, 8 and 12 h after drug administration and the samples were analyzed for blood glucose by using glucose-oxidase/peroxidase method using a visible spectrophotometer. In long term study, the extract (300 mg/kg) was administered to streptozotocin-induced diabetic rats, daily for 8 weeks. Blood glucose was measured at weekly intervals for 4 weeks. Urine samples were collected before the induction of diabetes and at the end of 8 weeks of treatments and analyzed for urinary protein, albumin and creatinine levels. The data was compared statistically using one-way ANOVA with post-hoc Dunnet's t-test. RESULTS: The chloroform extract of T. chebula seeds produced dose-dependent reduction in blood glucose of diabetic rats and comparable with that of standard drug, glibenclamide in short term study. It also produced significant reduction in blood glucose in long term study. Significant renoprotective activity is observed in T. chebula treated rats. The results indicate a prolonged action in reduction of blood glucose by T. chebula and is probably mediated through enhanced secretion of insulin from the β-cells of Langerhans or through extra pancreatic mechanism. The probable mechanism of potent renoprotective actions of T. chebula has to be evaluated. CONCLUSION: The present studies clearly indicated a significant antidiabetic and renoprotective effects with the chloroform extract of T. chebula and lend support for its traditional usage. Further investigations on identification of the active principles and their mode of action are needed to unravel the molecular mechanisms involved in the observed effects

    Rapid Microbiological Testing: Monitoring the Development of Bacterial Stress

    Get PDF
    The ability to respond to adverse environments effectively along with the ability to reproduce are sine qua non conditions for all sustainable cellular forms of life. Given the availability of an appropriate sensing modality, the ubiquity and immediacy of the stress response could form the basis for a new approach for rapid biological testing. We have found that measuring the dielectric permittivity of a cellular suspension, an easily measurable electronic property, is an effective way to monitor the response of bacterial cells to adverse conditions continuously. The dielectric permittivity of susceptible and resistant strains of Escherichia coli and Staphylococcus aureus, treated with gentamicin and vancomycin, were measured directly using differential impedance sensing methods and expressed as the Normalized Impedance Response (NIR). These same strains were also heat-shocked and chemically stressed with Triton X-100 or H2O2. The NIR profiles obtained for antibiotic-treated susceptible organisms showed a strong and continuous decrease in value. In addition, the intensity of the NIR value decrease for susceptible cells varied in proportion to the amount of antibiotic added. Qualitatively similar profiles were found for the chemically treated and heat-shocked bacteria. In contrast, antibiotic-resistant cells showed no change in the NIR values in the presence of the drug to which it is resistant. The data presented here show that changes in the dielectric permittivity of a cell suspension are directly correlated with the development of a stress response as well as bacterial recovery from stressful conditions. The availability of a practical sensing modality capable of monitoring changes in the dielectric properties of stressed cells could have wide applications in areas ranging from the detection of bacterial infections in clinical specimens to antibiotic susceptibility testing and drug discovery

    Transient Protein-Protein Interaction of the SH3-Peptide Complex via Closely Located Multiple Binding Sites

    Get PDF
    Protein-protein interactions play an essential role in cellular processes. Certain proteins form stable complexes with their partner proteins, whereas others function by forming transient complexes. The conventional protein-protein interaction model describes an interaction between two proteins under the assumption that a protein binds to its partner protein through a single binding site. In this study, we improved the conventional interaction model by developing a Multiple-Site (MS) model in which a protein binds to its partner protein through closely located multiple binding sites on a surface of the partner protein by transiently docking at each binding site with individual binding free energies. To test this model, we used the protein-protein interaction mediated by Src homology 3 (SH3) domains. SH3 domains recognize their partners via a weak, transient interaction and are therefore promiscuous in nature. Because the MS model requires large amounts of data compared with the conventional interaction model, we used experimental data from the positionally addressable syntheses of peptides on cellulose membranes (SPOT-synthesis) technique. From the analysis of the experimental data, individual binding free energies for each binding site of peptides were extracted. A comparison of the individual binding free energies from the analysis with those from atomistic force fields gave a correlation coefficient of 0.66. Furthermore, application of the MS model to 10 SH3 domains lowers the prediction error by up to 9% compared with the conventional interaction model. This improvement in prediction originates from a more realistic description of complex formation than the conventional interaction model. The results suggested that, in many cases, SH3 domains increased the protein complex population through multiple binding sites of their partner proteins. Our study indicates that the consideration of general complex formation is important for the accurate description of protein complex formation, and especially for those of weak or transient protein complexes

    The cryo-electron microscopy supramolecular structure of the bacterial stressosome unveils its mechanism of activation

    Get PDF
    How the stressosome, the epicenter of the stress response in bacteria, transmits stress signals from the environment has remained elusive. The stressosome consists of multiple copies of three proteins RsbR, RsbS and RsbT, a kinase that is important for its activation. Using cryo-electron microscopy, we determined the atomic organization of the Listeria monocytogenes stressosome at 3.38 Å resolution. RsbR and RsbS are organized in a 60-protomers truncated icosahedron. A key phosphorylation site on RsbR (T209) is partially hidden by an RsbR flexible loop, whose "open" or "closed" position could modulate stressosome activity. Interaction between three glutamic acids in the N-terminal domain of RsbR and the membrane-bound mini-protein Prli42 is essential for Listeria survival to stress. Together, our data provide the atomic model of the stressosome core and highlight a loop important for stressosome activation, paving the way towards elucidating the mechanism of signal transduction by the stressosome in bacteria
    • …
    corecore