13 research outputs found

    Can EROS/MACHO be detecting the galactic spheroid instead of the galactic halo?

    Full text link
    Models of our galaxy based on dynamical observations predict a spheroid component much heavier than accounted for by direct measurements of star counts and high velocity stars. If, as first suggested by Caldwell and Ostriker, this discrepancy is due to a large population of faint low-mass stars or dark objects in the spheroid, the spheroid could be responsible for microlensing events for sources in the Large Magellanic Cloud (LMC). We show that, although the rate of events is lower than predicted by a galactic halo made of microlensing objects, it is still significant for EROS/MACHO observations. Because of the different matter distributions in the halo and spheroid components, a comparison between microlensing event rates in the LMC, future measurements of microlensing in the galactic bulge and, possibly, in M31 can provide information about the amounts of dark objects in the different galactic components. If the EROS/MACHO collaborations find a deficiency with respect to their halo expectation, when more statistics are available, their detected events could be interpreted as coming from spheroid microlenses, allowing for a galactic halo composed entirely of non-baryonic dark matter.Comment: 12 pages, CERN-TH.7127/9

    The Survey for Ionization in Neutral-Gas Galaxies: III. Diffuse, Warm Ionized Medium and Escape of Ionizing Radiation

    Get PDF
    We use the first data release from the SINGG H-alpha survey of HI-selected galaxies to study the quantitative behavior of the diffuse, warm ionized medium (WIM) across the range of properties represented by these 109 galaxies. The mean fraction f_WIM of diffuse ionized gas in this sample is 0.59+/- 0.19, slightly higher than found in previous samples. Since lower surface-brightness galaxies tend to have higher f_WIM, we believe that most of this difference is due to selection effects favoring large, optically-bright, nearby galaxies with high star-formation rates. As found in previous studies, there is no appreciable correlation with Hubble type or total star-formation rate. However, we find that starburst galaxies, defined here by an H-alpha surface brightness > 2.5x 10^39 erg s^-1 kpc^-2 within the H-alpha half-light radius, do show much lower fractions of diffuse H-alpha emission. The cause apparently is not dominated by a lower fraction of field OB stars. However, it is qualitatively consistent with an expected escape of ionizing radiation above a threshold star-formation rate, predicted from our model in which the ISM is shredded by pressure-driven supernova feedback. The HI gas fractions in the starburst galaxies are also lower, suggesting that the starbursts are consuming and ionizing all the gas, and thus promoting regions of density-bounded ionization. If true, these effects imply that some amount of Lyman continuum radiation is escaping from most starburst galaxies, and that WIM properties and outflows from mechanical feedback are likely to be pressure-driven. However, in view of previous studies showing that the escape fraction of ionizing radiation is generally low, it is likely that other factors also drive the low fractions of diffuse ionized gas in starbursts.Comment: 16 pages plus separate 2-page PostScript table. Accepted to the Astrophysical Journa

    SDSS-IV MaNGA: The Impact of Diffuse Ionized Gas on Emission-line Ratios, Interpretation of Diagnostic Diagrams, and Gas Metallicity Measurements

    Get PDF
    Diffuse ionized gas (DIG) is prevalent in star-forming galaxies. Using a sample of 365 nearly face-on star-forming galaxies observed by Mapping Nearby Galaxies at APO, we demonstrate how DIG in star-forming galaxies impacts the measurements of emission-line ratios, hence the interpretation of diagnostic diagrams and gas-phase metallicity measurements. At fixed metallicity, DIG-dominated low ÎŁHα regions display enhanced [S ii]/Hα, [N ii]/Hα, [O ii]/HÎČ and [O i]/Hα. The gradients in these line ratios are determined by metallicity gradients and ÎŁHα. In line ratio diagnostic diagrams, contamination by DIG moves H ii regions towards composite or low-ionization nuclear emission-line region (LI(N)ER)-like regions. A harder ionizing spectrum is needed to explain DIG line ratios. Leaky H ii region models can only shift line ratios slightly relative to H ii region models, and thus fail to explain the composite/LI(N)ER line ratios displayed by DIG. Our result favours ionization by evolved stars as a major ionization source for DIG with LI(N)ER-like emission. DIG can significantly bias the measurement of gas metallicity and metallicity gradients derived using strong-line methods. Metallicities derived using N2O2 are optimal because they exhibit the smallest bias and error. Using O3N2, R23, N2 = [N ii]/Hα and N2S2Hα to derive metallicities introduces bias in the derived metallicity gradients as large as the gradient itself. The strong-line method of Blanc et al. (IZI hereafter) cannot be applied to DIG to get an accurate metallicity because it currently contains only H ii region models that fail to describe the DIG

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z∌0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z∌0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z∌0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z∌0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) began observations in July 2014. It pursues three core programs: APOGEE-2,MaNGA, and eBOSS. In addition, eBOSS contains two major subprograms: TDSS and SPIDERS. This paper describes the first data release from SDSS-IV, Data Release 13 (DR13), which contains new data, reanalysis of existing data sets and, like all SDSS data releases, is inclusive of previously released data. DR13 makes publicly available 1390 spatially resolved integral field unit observations of nearby galaxies from MaNGA,the first data released from this survey. It includes new observations from eBOSS, completing SEQUELS. In addition to targeting galaxies and quasars, SEQUELS also targeted variability-selected objects from TDSS and X-ray selected objects from SPIDERS. DR13 includes new reductions ofthe SDSS-III BOSS data, improving the spectrophotometric calibration and redshift classification. DR13 releases new reductions of the APOGEE-1data from SDSS-III, with abundances of elements not previously included and improved stellar parameters for dwarf stars and cooler stars. For the SDSS imaging data, DR13 provides new, more robust and precise photometric calibrations. Several value-added catalogs are being released in tandem with DR13, in particular target catalogs relevant for eBOSS, TDSS, and SPIDERS, and an updated red-clump catalog for APOGEE.This paper describes the location and format of the data now publicly available, as well as providing references to the important technical papers that describe the targeting, observing, and data reduction. The SDSS website, http://www.sdss.org, provides links to the data, tutorials and examples of data access, and extensive documentation of the reduction and analysis procedures. DR13 is the first of a scheduled set that will contain new data and analyses from the planned ~6-year operations of SDSS-IV.PostprintPeer reviewe
    corecore