48 research outputs found

    Postseismic Deformation in the Northern Antarctic Peninsula Following the 2003 and 2013 Scotia Sea Earthquakes

    Get PDF
    Large earthquakes in the vicinity of Antarctica have the potential to cause postseismic viscoelastic deformation affecting measurements of displacement that are used to constrain models of glacial isostatic adjustment (GIA). In November 2013, a Mw 7.7 strike‐slip earthquake occurred in the Scotia Sea, 650 km from the Antarctic Peninsula. GPS time series from the northern Peninsula show a change in rate after this event, indicating a far‐field postseismic deformation signal is present. In this study, we use a finite element model with a suite of 1D and 3D Earth structures to investigate the extent of postseismic deformation in the Antarctic Peninsula. Model output is compared with GPS time series to place constraints on the Earth structure in this region. The preferred Earth structure has a thin lithosphere combined with a Burgers rheology with steady‐state viscosity of 4 × 1018 Pa s and transient viscosity one order of magnitude lower. Our study shows that including 3D Earth structure does not improve the fit. Using the best fitting Earth structure, we run a forward model of the nearby 2003 Mw 7.6 strike‐slip earthquake and combine the predictions for both earthquakes. We show that postseismic deformation is widespread across the northern Peninsula with rates of horizontal deformation up to 1.65 mm/yr for the period 2015–2020, a signal that persists for decades. These results suggest that much of Antarctica may be deforming due to recent postseismic deformation and this signal needs to be accounted for when using GPS observations to constrain geophysical models

    Estimation of offsets in GPS time-series and application to the detection of earthquake deformation in the far-field

    Get PDF
    Extracting geophysical signals from Global Positioning System (GPS) coordinate time-series is a well-established practice that has led to great insights into how the Earth deforms. Often small discontinuities are found in such time-series and are traceable to either broad-scale deformation (i.e. earthquakes) or discontinuities due to equipment changes and/or failures. Estimating these offsets accurately enables the identification of coseismic deformation estimates in the former case, and the removal of unwanted signals in the latter case which then allows tectonic rates to be estimated more accurately. We develop a method to estimate accurately discontinuities in time series of GPS positions at specified epochs, based on a so-called ‘offset series’. The offset series are obtained by varying the amount of GPS data before and after an event while estimating the offset. Two methods, a mean and a weighted mean method, are then investigated to produce the estimated discontinuity from the offset series. The mean method estimates coseismic offsets without making assumptions about geophysical processes that may be present in the data (i.e. tectonic rate, seasonal variations), whereas the weighted mean method includes estimating coseismic offsets with a model of these processes. We investigate which approach is the most appropriate given certain lengths of available data and noise within the time-series themselves. For the Sumatra–Andaman event, with 4.5 yr of pre-event data, we show that between 2 and 3 yr of post-event data are required to produce accurate offset estimates with the weighted mean method. With less data, the mean method should be used, but the uncertainties of the estimated discontinuity are larger

    Advancing geodynamic research in Antarctica: Reprocessing GNSS data to infer consistent coordinate time series (GIANT-REGAIN)

    Get PDF
    For nearly three decades, geodetic GNSS measurements in Antarctica have provided direct observations of bedrock displacement, which is linked to various geodynamic processes, including plate motion, post-seismic deformation and glacial isostatic adjustment (GIA). Previous geodynamic studies in Antarctica, especially those pertaining to GIA, have been constrained by the limited availability of GNSS data. This is due to the fact that GNSS data are collected by a wide range of institutions and network operators, with the raw observational data either not publicly available or scattered across various repositories. Further, the metadata necessary for rigorous data processing has often not been available or reliable. Consequently, the potential of GNSS observations for geodynamic studies in Antarctica has not been fully exploited yet. Here, we present consistently processed coordinate time series for GNSS sites in Antarctica and the sub-Antarctic region for the time span from 1995 to 2021. The data set is composed of 286 continuous and episodic sites, with 258 sites having a time span longer than three years. The coordinate time series were obtained from a combination of four independent processing solutions using different GNSS software and products, allowing the identification of inconsistencies in individual solutions. From these, we infer a reliable and robust combined solution. A key issue was the thorough reassessment of station metadata to minimise artefacts and biases in the coordinate time series. The resulting data set provides coordinate time series with unprecedented spatio-temporal coverage, promising significant advancements in future geodynamic studies

    Subduction and volcanism in the Iberia-North Africa collision zone from tomographic images of the upper mantle

    Get PDF
    New tomographic images of the upper mantle beneath the westernmost Mediterranean suggest that the evolution of the region experienced two subduction-related episodes. First subduction of oceanic and/or extended continental lithosphere, now located mainly beneath the Betics at depths greater than 400 km, took place on a NW-SE oriented subduction zone. This was followed by a slab-tear process that initiated in the east and propagated to the west, leading to westward slab rollback and possibly lower crustal delamination. The current position of the slab tear is located approximately at 4°W, and to the west of this location the subducted lithosphere is still attached to the surface along the Gibraltar Arc. Our new P-wave velocity model is able to image the attached subducted lithosphere as a narrow high-velocity body extending to shallow depths, coinciding with the region of maximum curvature of the Gibraltar Arc, the occurrence of intermediate-depth earthquakes, and anomalously thick crust. This thick crust has a large influence in the measured teleseismic travel time residuals and therefore in the obtained P-wave tomographic model. We show that removing the effects of the thick crust significantly improves the shallow images of the slab and therefore the interpretations based on the seismic structureThis is a contribution of the Team Consolider-Ingenio 2010 TOPO-IBERIA (CSD2006-00041). Additional fundingwas provided by the SIBERIA (CGL2006-01171), RIFSIS (CGL2009-09727) and ALERTES-RIM (CGL2013-45724-C3-3-R) projects.Peer reviewe
    corecore