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Abstract

Optimization of energy usage in wireless sensor networks (WSN) has been an active research field for the last
decades and various approaches have been explored. In fact, A well designed energy consumption model is the
foundation for developing and evaluating a power management scheme in network of energy constrained devices
such as: WSN. We are interested in developing optimal centralized power control policies for energy harvesting
wireless multimedia sensor networks (WMSN) equipped with photovoltaic cells. We propose a new complete
information Markov decision process model to characterize sensor’s battery discharge/recharge process and inspect
the structural properties of optimal transmit policies.

1 Introduction
The recent technological advances in the fields of
micro-electronic, wireless communication along with
reduction of production costs have motivated the devel-
opment of a novel generation of wireless networks. wire-
less sensor networks (WSN) are articulated over a set of
miniaturized battery powered devices (sensors) with
communication capabilities and are expected to become
highly integrated into our daily activities. This class of
networks is perceived as an evolution of AdHoc net-
works with specific energy and computation limitations.
Also, the increasing availability, at low cost, of multime-
dia devices (cameras, microphones,...) has triggered the
emergence of multimedia wireless sensor networks
(WMSN) [1,2]. With the diversity of their application
domains, ranging from healthcare and intelligent patient
monitoring to disaster relief and industrial process
supervision through intrusion detection and border pro-
tection, WMSN hold a promising future [3]. It is note-
worthy that the volume and the nature of carried
multimedia content, mainly composed of images and/or
video streams, impose severe requirements on sensor’s
residual energy and available bandwidth.

The energy scarcity represents one of the major lim-
itations of WMSN, indeed, post-deployment replace-
ment of the sensors batteries is generally not practical
or even impossible. Therefore, a proper management
strategy of the residual energy happens to be a crucial
prerequisite to any large scale WMSN deployment. In
order to preserve the sensors energy, an optimal choice
of transmit powers and an efficient scavenging mechan-
ism of energy from the deployment environment along
with an adequate topological placement of the sensors
are necessary.
A variety of topologies have been proposed for WMSN

deployment, notably: single-tier flat, single-tier clustered
and multi-tier (see Figure 1). Introducing hierarchy in
WMSN benefits at various levels: indeed, since sensors
forward exclusively packets produced within their cluster,
the communication overhead is reduced and conse-
quently the network lifetime is prolonged. Also,
resourced devices (multi-processing hubs) realize heavy
computations and aggregation of data reported by their
cluster sensors, reducing by the way the energy con-
sumption resulting from relaying redundant data.
Energy harvesting [4-7] in the context of WSN received

increasing attention from research community. Indeed,
enabling sensors to replenish their energy reserves,
extends the WMSN’s deployment lifetime and enlarges
their application domains. Energy harvesting sources are
various and encompass solar, wind and vibratory sources.
In this work we will focus our attention on sensors
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equipped with photovoltaic cells that realize solar energy
transformation into electric energy needed to recharge
their batteries.
Energy consumption optimization remains a crucial

issue even for energy harvesting WMSN. In fact, the
harvested energy should be exploited optimally to cope
with energy sources periodicity (day/night cycles) and
unpredictability (wind activity/inactivity periods). Since,
most of energy consumption is incurred at transceiver
level, a balance should be found between conflicting
objectives: maximizing the achieved throughput while
reducing energy consumption and consequently extend-
ing the sensor’s battery lifetime. Optimal energy man-
agement policies for energy harvesting sensors are
considered in [8]. The discounted throughput is maxi-
mized over an infinite horizon, where queuing for data
is also considered. In [9], the authors consider a binary
power control problem: at each slot the wireless device
could either transmit at a constant power or remain
silent. The authors consider only the single user case
and the optimal transmission policy is shown to be of a
threshold type for the soft and strict delay constraint
cases. The authors of [10] presented a decentralized
power control with stochastic channel variation scheme.

The proposed scheme considers a cost function that
accounts for the QoS of each user and the interference
to other users. The single user optimal policy is general-
ized to the multiple users scenario for the ergodic
regime where the spreading factor and the number of
users grow infinitely but their ratio remains constant. In
[11], the authors consider a single transmitter-receiver
scenario where the transmitter has a finite buffer, and
solved the problem of dynamically assigning rates/
powers to packets in order to minimize the long-term
average transmission energy subject to an upper bound
on the buffer overflow probability. The problem is for-
mulated as a constrained Markov decision process
(CMDP) and an analytical solution is given and proved
to be monotone in queue length. The authors of [12]
use an evolutionary game theoretic formulation to char-
acterize the equilibrium policy for power allocation
under channel un-certainty and delayed imperfect pay-
offs. A heterogonous learning framework that accounts
for user and technology specificities is proposed. The
authors of [13] address the problem of network resource
allocation for energy-harvesting sensor platforms with
time-varying battery recharging rates. They propose a
joint approach that combines QuickFix for getting the

Figure 1 Hierarchical wireless multimedia network [1].
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optimal sampling rate and SnapIt that adapts the sam-
pling rate with the objective of maintaining the battery
at a target level. The considered networks are character-
ized by a special directed acyclic network graph (DAG)
structure and the choice of a given rate implies a speci-
fic transmit power. In [14], an energy harvesting body
sensor network formed by sensors with a two-state
energy harvester device is considered. The authors
develop policies based on the energy-error probability
tradeoff to maximize successful transmission probability
while minimizing probability of running out of energy.
The developed strategies exploit the knowledge of the
current energy level and the process governing event
generation and battery recharge to select the appropriate
transmission mode. The problem of throughput optimal
energy allocation is studied for energy harvesting sys-
tems in a time constrained slotted setting in [15]. The
structural properties of the optimal power allocation
policy are obtained through dynamic programming and
convex optimization. The optimal use of the harvested
energy for different energy profiles and storage capabil-
ities is discussed in [16] with the outage probability con-
sidered as a performance metric. The authors developed
a discrete time Markov model of the evolution of bat-
tery and transmission state and provide optimal trans-
mission strategy that minimizes outage probability.
Our objective is to define an optimal energy manage-

ment policy for the centralized dynamic power control
problem for energy harvesting WMSN. Thus, at each
time slot, the transmission powers of all the sensors are
fixed by the base station to maximize the expected sys-
tem’s throughput under minimum energy consumption.
The added value of our work covers the following

points:

• We formalize the centralized power control pro-
blem in the context of hierarchical energy harvesting
WMSN as a complete information MDP.
• A stochastic model for the discharge/recharge bat-
tery process for energy harvesting WMSN is
provided.
• We consider a novel utility function that balances
the sojourn in a each battery state along with
achieved throughput for a given transmit policy.
• The structural properties of centrally computed
optimal transmit policies are inspected.

This article is organized as follows: In Section 2, we
give a mathematical formulation for dynamic power
control problem in the context of energy harvesting
WMSN. Optimal transmission policies are treated in
Sections 3 and 4 for the single and multiple sensors sce-
narios. Then we present numerical simulation results in

Section 5. Finally, we conclude the article and announce
our future works in Section 6.

2 System model
We consider a WMSN formed by a set of sensors
N = {1, . . . ,n} , under the authority of a single base sta-
tion or gateway. Each sensor is equipped by its own bat-
tery and uses power to communicate with the base
station either directly or through multimedia processing
hubs. We discretize each sensor’s battery capacity to
several intervals that give a more coarse-grained descrip-
tion of the battery state, e.g., full, medium, discharged.
The sensors are equipped with photovoltaic cells that
make them capable of harvesting solar energy while
undergoing the discharge process. The residual energy
of the battery dictates available transmission powers and
the achieved throughput is affected by the chosen trans-
mit powers of other sensors. Time is discrete and at
each time slot t, each sensor knows its own battery
state, whereas the battery state of the other sensors and
their actions remain unknown.
The formulated problem fits within the MDP frame-

work with full information and infinite planning hori-
zon, where the base station will compute and provide
each sensor with its optimal transmission strategy, given
the fact that it has access to all sensors’ information i.e
environment, battery and radio channel status. In order
to be aware of each sensor battery level, we assume that
time is slotted into virtual slots that encompasses several
physical slots. the initial physical slots will be affected to
the sensors to communicate their battery levels to the
base station in a TDMA fashion. The remaining slots
will serve for data exchange with interference possibility.
We use three bits to code the energy level of each bat-
tery and thus, we could represent up to eight battery
states.

2.1 Mathematical formulation
Denote by w = {wt}t≥t0 the set of environment states at
each time slot post t0. Thus, the power allocation
dynamic problem for a sensor j could be modeled by an
MDP:

� = {X j, (Aj(w, sj))sj∈X j,j∈N ,w, q
j,λ} (1)

Where:

• X j = {0, 1, 2, . . . ,m − 1} is a finite set of states of
sensor’s j battery. A state of the battery represents
some interval of percentage of the remaining energy.
The energy level of the battery increases (respec-
tively decreases) sequentially. Initially, the sensor’s
battery is in its highest state (m - 1), as sensors
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perform their affected tasks (event detection, packets
forwarding,...) they consume energy and their bat-
teries energy levels decrease sequentially. The har-
vested solar energy will be converted into electrical
energy and will increase the sensors batteries resi-
dual energy level sequentially.

• ∀sj,t ∈ X j,Aj(wt, sj,t) = {p0, . . . , psj,t } is a finite set of

available transmission powers for sensor j. This set
satisfies Aj (wt, sj, t - 1) ⊂ Aj (wt, sj, t): more powers
are available at higher states. A sensor makes a deci-

sion on its transmit power pjt ∈ Aj(wt, sj,t) based on

its remaining energy sj, t at time t.
• qj is the state transition probability of sensor’s j
battery. Given the state of environment wt, the state
sj, t of the battery of j, the state cj, t of the radio
channel in the vicinity of j, and the actions of the

others p−j
t = (p1t , p

2
t , . . . , p

j−1
t , pj+1t , . . . , pnt ) the new

states are (sj, t+1, cj, t+1) with the probability

qj((sj,t+1, cj,t+1)|(sj,t, cj,t), pjt , p−j
t ).

• The discount factor l indicates for a user the
decay in the gain value with the evolution of the
time.

Let ht = (wt, s1, t, c1, t,..., sn, t, cn, t) be the state profile
of all the system at time t. The action profile of the sys-

tem is: pt = (p1t , . . . , p
n
t ) , where ∀j ∈ N , pjt ∈ Aj(wt, sj,t) .

When wt = 0, the SINR of sensor j is null. For wt ≠0,
the SINR of sensor j is given by:

SINRj(ηt, pt) =
pjthj(wt, sj,t, cj,t)

N0 +
∑

i�=j p
i
thi(wt, si,t , ci,t)

(2)

where hj(wt, sj,t, cj,t)p
j
t represents the power received

at the base station or the multimedia processing hub
given that states are sj, t (respectively cj, t) for the battery
(respectively the radio channel in the vicinity) of sensor

j. pjt is the power level chosen by j and hj (wt, sj, t, cj, t)

is a function of the channel state and others exogenous
characteristics, N0 is the variance of the noise. The
throughput of sensor j at time t is an increasing func-
tion of the SINRj (ht, pt).{

Thpj(ηt, pt) = f j(SINRj(ηt, pt))
f j(0) = 0

(3)

In the rest of the article, we consider f j to be Shannon
capacity [17] and thus:

f j(SINRj(ηt, pt)) = log(1 + SINRj(ηt, pt)) (4)

2.2 Stochastic battery model for sensors with energy
harvesting capabilities
The sensors harvest energy through a photovoltaic cell
and use the scavenged power to recharge their batteries.
Thus, the sensor battery will move from state sj, t to

state sj, t+1 with probability qj(sj,t + 1|sj,t , pjt) = pharvest .

The transmit power choice of j determines the transi-
tions to the next state. Thus, when the sensor j selects a

transmit power pjt ∈ Aj(wt, sj,t) , the new state of the

battery is sj, t+1 with probability

qj(sj,t+1|sj,t, pjt), qj(sj,t+1|sj,t, pjt) = 0 if sj, t+1 ∉ { sj, t + 1, sj,

t, sj, t -1}. If the energy harvesting process is frozen for a
long period of time (due to cloudy weather for exam-
ple), the state 0 is reached (the battery is completely
empty) and the sensor is considered to be out of service.
Figure 2 shows the state transition probabilities of sen-
sor’s j battery.
The probability to move to the lower adjacent state

increases with the energy consumption i.e

pjt > p′j
t ⇒ qj(sj,t − 1|sj,t, pjt) > qj(sj,t − 1|sj,t , p′j

t ) :

pjt > p′j
t ⇒ qj(sj,t − 1|sj,t, pjt) > qj(sj,t − 1|sj,t , p′j

t ) (5)

At each time slot t, depending on the remaining
energy off the battery, the sensor j makes a decision on

its transmit power pjt . Denote by the policy

d∞
j = (dj0, d

j
1, . . . , d

j
m−1) the collection of decision rules

of that sensor under infinite planning horizon, where

∀si ∈ X j, dji ∈ �(Aj(si)) and Δ(Aj (si)) stands for the

space of probability distribution over sensor’s j action
space for the battery state si.

The sojourn time Tj(l, d∞
j ) in the state l under trans-

mit policy d∞
j can be expressed as:

Tj(l, d∞
j , t0) = argmin

t
{t > t0|sj,t = l − 1, sj,t0 = l, d∞

j }

= 1 + qj(l|l, pjt0 )Tj(l, d∞
j , t0 + 1).

When pjt depends only on the state of the battery but

not on the time (stationary policy), the sojourn becomes:

Tj(l, d∞
j ) =

1
qj(l − 1|l, d∞

j ) + qj(l + 1|l, d∞
j ) (6)

3 Optimal policy for a single sensor
When considering a single sensor, the interferences are
omitted from the SINR expression that becomes equiva-
lent to the signal to noise ratio (SNR):

SNRj(ηt, pt) =
pjthj(wt ,sj,t ,cj,t)

N0
and the sensor receives an
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immediate reward rt(sj,t, p
j
t) for choosing transmit

power pjt at slot t. The immediate reward reflects a bal-

ance between maximizing the expected sojourn in a
given battery state and the corresponding achieved
throughput for the chosen transmit power:

rt(sj,t, p
j
t) =

(
1 − 1

Tj(sj,t, p
j
t)

)
log

(
1 +

pjth
j

N0

)
(7)

Let ind: X j → R be a non-decreasing function on

X j . We consider transition probabilities that adhere to
the following expression:

m-1

2

10

q(m-1|m-1,p4 )

q(m-2|m-1,1-p4 )

m-2

q(m-2|m-2,p3)

q(2|2,p2)

q(1|2,1-p2)

q(1|1,p1)
q(0|1,1-p1)

q(2|1,p1)

q(m-1|m-2,p1)

Figure 2 Stochastic model of the sensor’s battery discharge/recharge process.
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qj(s′j,t|sj,t, pjt) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − pjt
pw(sj,t)

− Pharvest
ind(sj,t)

s′j,t = sj,t
pjt

pw(sj,t)
− (ind(sj,t)−1)pharvest

ind(sj,t)
s′
j,t
= sj,t − 1

Pharvest s′j,t = sj,t + 1

0 else.

(8)

In the discounted total reward problem the gains on
the first stages are more important than the future ones.
In particular, a gain acquired at time n is assumed to
have a present value ln r(sj, pj) where 0 < l <1 is a dis-
count factor. Under an infinite planning horizon and
due to its elegant theory, the ease in which it allows
inclusion of constraints, and its facility for sensitivity
analysis, linear programming formulation [18] is ade-
quate to solve our MDP. We randomly choose a set of
real constants {α(sj)}sj∈X j to be a distribution probability
over the states of sensor’s j battery. Therefore, the set of
a (sj) should respect the following constraint:∑

sj∈X j
α(sj) = 1 . We also consider for every state sj

and available action PjÎAj (sj) the linear program vari-
able x(sj, pj) =

∑∞
n=0 λnProb(sj, pj) that indicates the

expected discounted time of the sensor’s battery being
in state sj and making decision pj. The linear program
equivalent to the l discounted MDP Ω is described by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Maximize
∑
sj∈X j

∑
pj∈A(sj)

r(sj, pj)x(sj, pj)

Subject to ∑
pj∈Aj(sj) x(s

′
j, p

j) − ∑
sj∈X j

∑
pj∈Aj(sj)

λqj(s′j|sj, pj)x(sj, pj) = α(s′j)

∀sj ∈ X j, ∀pj ∈ Aj(sj), x(sj, pj) ≥ 0∑
s′ j∈X j

α(s′j) = 1

0 < λ < 1.

(9)

The solution of this linear program (LP) is obtained
through application of the simplex method. After sol-
ving the LP above, we recover the optimal decision rules
of the associated MDP by applying the rule [19]:

• A discounted MDP has always a deterministic opti-
mal decision rule [20] that we select based on the
following criterion:

∀pl ∈ Aj(sk), d
j
k = pl ⇒ x(sk, pl) > 0, sk ∈ X j. (10)

We argue that there exists structured decision rules
for the MDP Ω.
Proposition 1. There exists optimal monotone non-

decreasing decision rules on X j for the MDP Ω.
The detailed proof of Proposition 1 is given below:

Proof. Let Q(k, l, pjt) =
∑i=m−1

i=k qj(si,t|sl,t, pjt) , and pjt , p
′j
t

two transmit powers such as pjt < p′j
t :

(1) The immediate reward rj for sensor j is non-

decreasing on X j for all p′j
t ∈ Aj .

(2) The immediate reward rj for sensor j is superaddi-
tive.

r(sl,t + 1, p′j
t ) + r(sl,t, p

j
t) − r(sl,t + 1, pjt) − r(sl,t , p

′j
t ) =(

1

Tj(sl,t, p
′j
t )

− 1

Tj(sl,t + 1, p′j
t )

)
log

(
1 +

p′j
t h

j

N0

)
+

(
1

Tj(sl,t + 1, pjt)
− 1

Tj(sl,t, p
j
t)

)
log

(
1 +

pjth
j

N0

)

= g(p′j
t ) − g(pjt)

Where

g : pjt 
→ pw(sl,t+1)−pw(sl,t)
pw(sl,t)pw(sl,t+1)

pjt +
ind(sl,t+l)−ind(sl,t)
ind(sl,t)ind(sl,t+1)

pharvest . Since

the functions pw and ind are monotone non-decreasing
we conclude that r is a superadditive function.

(3) Q(k, l, pjt) is non-decreasing on X j : Let (sk, sl) ∈ X j × X j ,

sk > sl + 1 : �Q(k, l, pjt) = Q(k, l + 1, pjt) − Q(k, l, pjt) = Q(k, l + 1, pjt) = pharvest ≥ 0.

sk = sl + 1 :

�Q(k, l, pjt) = Q(k, l + 1, pjt) − Q(k, l, pjt)

=
i=m−1∑
i=k

qj(si,t|sl,t + 1, pjt) − qj(si,t|sl,t, pjt)

= qj(sl,t + 1|sl,t + 1) + pharvest − pharvest ≥ 0.

sk = sl : qj(sl,t|sl,t , pjt) is a monotone non-decreasing

function on Xj , thus:

�Q(k, l, pjt) =
i=m−1∑
i=k

qj(si,t|sl,t + 1, pjt) − qj(si,t|sl,t, pjt)

= qj(sl,t + 1|sl,t + 1, pjt) + qj(sl,t|sl,t + 1, pjt) + pharvest − qj(sl,t|sl,t , pjt) − pharvest

≥ qj(sl,t|sl,t + 1, pjt) ≥ 0.

sk ≤ sl - 1:

�Q(k, l, pjt) =
i=m−1∑
i=k

qj(si,t|sl,t + 1, pjt) − qj(si,t|sl,t, pjt)

= 1 − 1 = 0.

(4) Q(k, l, pjt) is globally superadditive on X j × Aj ,

denote by ϑ = Q(k, l + 1, p′j
t ) +Q(k, l, pjt) − Q(k, l + 1, pjt) − Q(k, l, p′j

t ) :
sk >sl + 1: ϑ = Pharvest - Pharvest = 0.
sk = sl + 1:

ϑ = pharvest + qj(sl+1|sl+1, p′j
t ) + pharvest − qj(sl+1|sl+1, pjt) − pharvest − pharvest

≤ 0.

sk = sl : ϑ = 1 + qj(sl|sl, pjt) + pharvest − 1 − qj(sl|sl, p′j
t ) − pharvest ≥ 0

sk ≤ sl − 1 : ϑ = 1 − 1 = 0.

We conclude by virtue of Theorem 6.11.6 of [20] that
deterministic optimal monotone non-decreasing policies
over the set Xj exists for the MDP (1).

4 Optimality for all the sensors batteries lifetime
Under the assumption that each sensor uses CDMA
with mutual orthogonal codes to communicate with the
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base station or the multimedia processing hubs, sensors
transmissions do not interfere. Therefore, the overall
policy (d∞∗

1 , . . . , d∞∗
n ) realized when every sensor adopts

its optimal transmit power happens to be the optimal
transmit policy for the overall system noted d∞*.
For the general case: non-orthogonal codes are used and

sensors transmissions do interfere. The WMSN is mod-
eled by the MDP: �+ = {X , (A(wt, St))St∈X ,w, Q, λ}
with full information. We extend the previously formu-
lated mathematical model to account for multiple sensors
and denote the augmented states and actions spaces

respectively X =
∏n

k=1 X k and A =
∏n

k=1 A
k . The transi-

tion probability from state St to St+1 for the power profile
Pt is given by the formula:

Q(St+1|St, Pt) =
n∏

k=1

q(sk,t+1|sk,t, pkt ), (sk,t+1|sk,t) ∈ X k × X k. (11)

With each sensor utility expressed as follows:

rt(sj,t, p
j
t) =

(
1 − 1

Tj(sj,t, p
j
t)

)
× log

(
1 +

pjth
j

N0 +
∑

k �=j p
k
t hk

)
(12)

The immediate reward for the network becomes:

Rt(St, Pt) =
n∑
j=1

rt(sj,t, p
j
t) (13)

We reconsider the LP in (9) for the augmented MDP:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Maximize
∑
S∈X

∑
a∈A(S)

R(S, a)x(S, a)

Subject to ∑
a∈A(S)

x(S′, a) − ∑
S∈X

∑
a∈A(S)

λQ(S′|S, a)x(S, a) = α(S′).

∀S ∈ X , ∀a ∈ A(S), x(S, a) ≥ 0∑
S′∈X

α(S′) = 1

0 < λ < 1.

5 Numerical investigations
We discretize each battery residual energy capacity to
five states: near full, high, medium, low and discharged.
The states set is: {0, 1, 2, 3, 4} and the transmit power
panel for each state is detailed in Table 1:
Our objective is to characterize the optimal transmit

policy for a single sensor with a discount factor l = 0.6.

We solve the associated LP through the simplex algo-
rithm to obtain the optimal policy summarized below:

σ ∗
j = (0 → P0, 1 → P0, 2 → P2, 3 → P3, 4 → P4).

Table 2 describes the optimal transmit policy for a
network formed by three sensor with three states {0, 1,
2} for a l = 0.6 discounted Ω+ under infinite horizon
planning. We notice that sensors tend to use their low-
est available transmission powers as using higher ones
result in reduced throughput due to interference and
rapid depletion of their batteries.

6 Concluding remarks
In this article we considered the problem of dynamic
centralized power allocation for energy harvesting
WMSN. We focus on solar powered sensors and pro-
vide a stochastic model for the associated battery dis-
charge/recharge process. The dynamic power control
problem was formulated as a MDP and the structural
properties of optimal transmission policies established.
We plan, in a near future, to generalize our approach
for the decentralized case with partial channel informa-
tion using stochastic game theory.

Author details
1Laboratoire des Systèmes d’Information Mobiles et Embarqués (SIME)/
Mobile Intelligent System research group, Mohammed V-Souissi University,
ENSIAS, Madinat Al Irfane, BP 713, Agdal, Rabat, Morocco 2Ecole Nationale
des Sciences Appliquées d’Oujda (ENSAO), Mohammed I University, Oujda,
Morocco 3Department Telecommunications, Supelec,3, rue Joliot-Curie
91192, Gif Sur Yvette, Cedex, France 4University of Paris 13, 99 Avenue Jean-
Baptiste Clement, 93430, Villetaneuse, France

Competing interests
The authors declare that they have no competing interests.

Received: 1 October 2011 Accepted: 1 May 2012 Published: 1 May 2012

References
1. I Akyildiz, T Melodia, K Chowdhury, A survey on wireless multimedia sensor

networks. Comput Netw. 51(4), 921–960 (2007). doi:10.1016/j.
comnet.2006.10.002

Table 1 Transmit power panel

Battery state Available transmit powers (W)

0 {P0 = 0.0}

1 {P0, P1 = 10.0, P2 = 17.0, P3 = 18.0}

2 {P0 - P3, P4 = 23.0, P5 = 25.0, P6 = 30.0, P7 = 35.0}

3 {P0 - P7, P8 = 50.0, P9 = 58.0}

4 {P0- P9, P10 = 65.0, P11 = 75.0}

Table 2 Optimal transmit power

Network State Transmit power (W)

{0, 0, 0} {P0, P0, P0}

{{0, 0, 1}, {0, 1, 1}, {2, 2, 1}, {1, 0, 1}, {1, 2, 1}, {2, 0,
1}, {0, 2, 1}}

{P0, P0, P2}

{0, 0, 2} {P0, P0, P7}

{{0, 1, 2}, {0, 1, 0}, {2, 1, 0}, {2, 1, 1}, {2, 1, 2}} {P0, P2, P0}

{{0, 2, 2}, {0, 2, 0}} {P0, P7, P0}

{{1, 0, 2}, {1, 2, 2}} {P2, P0, P7}

{1, 1, 1} {P2, P0, P2}

{{1, 1, 2}, {1, 1, 0}} {P2, P2, P0}

{{1, 2, 0}, {1, 0, 0}} {P3, P0, P0}

{{2, 2, 2}, {2, 2, 0}, {2, 0, 2}, {2, 0, 0}} {P7, P0, P0}

Koulali et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:158
http://jwcn.eurasipjournals.com/content/2012/1/158

Page 7 of 8



2. I Almalkawi, M Guerrero Zapata, J Al-Karaki, J Morillo-Pozo, Wireless
multimedia sensor networks: current trends and future directions. Sensors.
10(7), 6662–6717 (2010). doi:10.3390/s100706662

3. K Fowler, The future of sensors and sensor networks survey results
projecting the next 5 years, in Proc Sensors Applications Symposium, 2009
(SAS 2009), New Orleans, LA, USA, 1–6 (2009)

4. S Sudevalayam, P Kulkarni, Energy harvesting sensor nodes: survey and
implications. IEEE Commun Surv Tutor. PP(99), 1–19 (2010)

5. W Seah, Z Eu, H Tan, Wireless sensor networks powered by ambient energy
harvesting (WSN-HEAP)-Survey and challenges, in Proc 1st International
Conference on Wireless Communication, Vehicular Technology, Information
Theory and Aerospace & Electronic Systems Technology, 2009. Wireless VITAE
2009, Aalborg, Danemark, 1–5 (2009)

6. A Kansal, M Srivastava, An environmental energy harvesting framework for
sensor networks, in Proceedings of the 2003 international symposium on Low
power electronics and design, 481–486 (2003)

7. A Kansal, J Hsu, S Zahedi, M Srivastava, Power management in energy
harvesting sensor networks. ACM Trans Embed Comput Syst (TECS). 6(4),
32–66 (2007). doi:10.1145/1274858.1274870

8. V Sharma, U Mukherji, V Joseph, S Gupta, Optimal energy management
policies for energy harvesting sensor nodes. IEEE Trans Wirel Commun. 9(4),
1326–1336 (2010)

9. H Wang, N Mandayam, DJ Goodman, P Lig-das, Dynamic power control
under energy and delay constraints, in Proc Global Telecommunications
Conference, 2001 (GLOBECOM ‘01), San Antonio, TX, USA, 1287–1291 (2001)

10. J Chamberland, V Veeravalli, Decentralized dynamic power control for
cellular CDMA systems. IEEE Trans Wirel Commun. 2(3), 549–559 (2003).
doi:10.1109/TWC.2003.811186

11. B Ata, Dynamic power control in a wireless static channel subject to a
quality-of-service con-straint. Operat Res. 53(5), 842–851 (2005). doi:10.1287/
opre.1040.0188

12. H Tembine, A Kobbane, M El Koutbi, Robust power allocation games under
channel uncertainty and time delays, in Proc Wireless Days (WD) (2010 IFIP),
Venice, Italy, 1–5 (2010)

13. R Liu, P Sinha, C Koksal, Joint energy management and resource allocation
in rechargeable sensor networks, in INFOCOM, 2010 Proceedings IEEE, 1–9
(2010)

14. A Seyedi, B Sikdar, Energy efficient transmission strategies for body sensor
networks with energy harvesting. IEEE Trans Commun. 58(7), 2116–2126
(2010)

15. C Ho, R Zhang, Optimal energy allocation for wireless communications
powered by energy harvesters, in IEEE International Symposium on
Information Theory Proceedings (ISIT), 2368–2372 (2010)

16. B Medepally, N Mehta, C Murthy, Implications of energy profile and storage
on energy harvesting sensor link performance, in Global
Telecommunications Conference, 2009. GLOBECOM 2009. IEEE, 1–6 (2009)

17. M Fallgren, On the complexity of maximizing the minimum Shannon
capacity in wireless networks by joint channel assignment and power
allocation, in Proc 18th IEEE International Workshop on Quality of Service
(IWQoS 2010), Beijing, China, 1–7 (2010)

18. A Schrijver, Theory of Linear and Integer Programming Wiley, New York,
(1986)

19. I Maros, Computational Techniques of the Simplex Method, vol. 61. (Springer,
New York, 2003)

20. M Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming Wiley, New York, (1994)

doi:10.1186/1687-1499-2012-158
Cite this article as: Koulali et al.: Dynamic power control for energy
harvesting wireless multimedia sensor networks. EURASIP Journal on
Wireless Communications and Networking 2012 2012:158.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Koulali et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:158
http://jwcn.eurasipjournals.com/content/2012/1/158

Page 8 of 8

http://www.ncbi.nlm.nih.gov/pubmed/22163571?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22163571?dopt=Abstract
http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1 Introduction
	2 System model
	2.1 Mathematical formulation
	2.2 Stochastic battery model for sensors with energy harvesting capabilities

	3 Optimal policy for a single sensor
	4 Optimality for all the sensors batteries lifetime
	5 Numerical investigations
	6 Concluding remarks
	Author details
	Competing interests
	References

