5,297 research outputs found

    The global electroweak fit at NNLO and prospects for the LHC and ILC

    Get PDF
    For a long time, global fits of the electroweak sector of the Standard Model (SM) have been used to exploit measurements of electroweak precision observables at lepton colliders (LEP, SLC), together with measurements at hadron colliders (Tevatron, LHC), and accurate theoretical predictions at multi-loop level, to constrain free parameters of the SM, such as the Higgs and top masses. Today, all fundamental SM parameters entering these fits are experimentally determined, including information on the Higgs couplings, and the global fits are used as powerful tools to assess the validity of the theory and to constrain scenarios for new physics. Future measurements at the Large Hadron Collider (LHC) and the International Linear Collider (ILC) promise to improve the experimental precision of key observables used in the fits. This paper presents updated electroweak fit results using newest NNLO theoretical predictions, and prospects for the LHC and ILC. The impact of experimental and theoretical uncertainties is analysed in detail. We compare constraints from the electroweak fit on the Higgs couplings with direct LHC measurements, and examine present and future prospects of these constraints using a model with modified couplings of the Higgs boson to fermions and bosons.Comment: 26 pages, 9 figure

    Mapping Patent Classifications: Portfolio and Statistical Analysis, and the Comparison of Strengths and Weaknesses

    Get PDF
    The Cooperative Patent Classifications (CPC) jointly developed by the European and US Patent Offices provide a new basis for mapping and portfolio analysis. This update provides an occasion for rethinking the parameter choices. The new maps are significantly different from previous ones, although this may not always be obvious on visual inspection. Since these maps are statistical constructs based on index terms, their quality--as different from utility--can only be controlled discursively. We provide nested maps online and a routine for portfolio overlays and further statistical analysis. We add a new tool for "difference maps" which is illustrated by comparing the portfolios of patents granted to Novartis and MSD in 2016.Comment: Scientometrics 112(3) (2017) 1573-1591; http://link.springer.com/article/10.1007/s11192-017-2449-

    Effects of COVID-19 Lockdown on Melanoma Diagnosis in Switzerland: Increased Tumor Thickness in Elderly Females and Shift towards Stage IV Melanoma during Lockdown.

    Get PDF
    At the early stages of the COVID-19 outbreak in 2020, Switzerland was among the countries with the highest number of SARS-CoV2-infections per capita in the world. Lockdowns had a remarkable impact on primary care access and resulted in postponed cancer screenings. The aim of this study was to investigate the effects of the COVID-19 lockdown on the diagnosis of melanomas and stage of melanomas at diagnosis. In this retrospective, exploratory cohort study, 1240 patients with a new diagnosis of melanoma were analyzed at five tertiary care hospitals in German-speaking Switzerland over a period of two years and three months. We compared the pre-lockdown (01/FEB/19-15/MAR/20, n = 655) with the lockdown (16/MAR/20-22/JUN/20, n = 148) and post-lockdown period (23/JUN/20-30/APR/21, n = 437) by evaluating patients' demographics and prognostic features using Breslow thickness, ulceration, subtype, and stages. We observed a short-term, two-week rise in melanoma diagnoses after the major lift of social lockdown restrictions. The difference of mean Breslow thicknesses was significantly greater in older females during the lockdown compared to the pre-lockdown (1.9 ± 1.3 mm, p = 0.03) and post-lockdown period (1.9 ± 1.3 mm, p = 0.048). Thickness increase was driven by nodular melanomas (2.9 ± 1.3 mm, p = 0.0021; resp. 2.6 ± 1.3 mm, p = 0.008). A proportional rise of advanced melanomas was observed during lockdown (p = 0.047). The findings provide clinically relevant insights into lockdown-related gender- and age-dependent effects on melanoma diagnosis. Our data highlight a stable course in new melanomas with a lower-than-expected increase in the post-lockdown period. The lockdown period led to a greater thickness in elderly women driven by nodular melanomas and a proportional shift towards stage IV melanoma. We intend to raise awareness for individual cancer care in future pandemic management strategies

    Drip and Mate Operations Acting in Test Tube Systems and Tissue-like P systems

    Full text link
    The operations drip and mate considered in (mem)brane computing resemble the operations cut and recombination well known from DNA computing. We here consider sets of vesicles with multisets of objects on their outside membrane interacting by drip and mate in two different setups: in test tube systems, the vesicles may pass from one tube to another one provided they fulfill specific constraints; in tissue-like P systems, the vesicles are immediately passed to specified cells after having undergone a drip or mate operation. In both variants, computational completeness can be obtained, yet with different constraints for the drip and mate operations

    Double-beta decay of 130^{130}Te to the first 0+^{+} excited state of 130^{130}Xe with CUORICINO

    Get PDF
    The CUORICINO experiment was an array of 62 TeO2_{2} single-crystal bolometers with a total 130^{130}Te mass of 11.311.3\,kg. The experiment finished in 2008 after more than 3 years of active operating time. Searches for both 0ν0\nu and 2ν2\nu double-beta decay to the first excited 0+0^{+} state in 130^{130}Xe were performed by studying different coincidence scenarios. The analysis was based on data representing a total exposure of N(130^{130}Te)\cdott=9.5×10259.5\times10^{25}\,y. No evidence for a signal was found. The resulting lower limits on the half lives are T1/22ν(130Te130Xe)>1.3×1023T^{2\nu}_{1/2}(^{130} Te\rightarrow^{130} Xe^{*})>1.3\times10^{23}\,y (90% C.L.), and T1/20ν(130Te130Xe)>9.4×1023T^{0\nu}_{1/2}(^{130} Te\rightarrow^{130} Xe^{*})>9.4\times10^{23}\,y (90% C.L.).Comment: 6 pages, 4 figure

    Physics at the e+ e- Linear Collider

    Get PDF
    A comprehensive review of physics at an e+e- Linear Collider in the energy range of sqrt{s}=92 GeV--3 TeV is presented in view of recent and expected LHC results, experiments from low energy as well as astroparticle physics.The report focuses in particular on Higgs boson, Top quark and electroweak precision physics, but also discusses several models of beyond the Standard Model physics such as Supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analyzed as well.Comment: 179 pages, plots and references updated, version to be published at EPJ

    Active membranes:3D printing of elastic fibre patterns on pre-stretched textiles

    Get PDF
    There has been a steady growth, over several decades, in the deployment of fabrics in architectural applications; both in terms of quantity and variety of application. More recently 3D printing and additive manufacturing have added to the palette of technologies that designers in architecture and related disciplines can call upon. Here we report on research that brings those two technologies together - the development of active membrane elements and structures. We show how these active membranes have been achieved by laminating 3D printed elasto-plastic fibres onto pre-stretched textile membranes. We report on a set of experiments involving one-, two- and multi-directional geometric arrangements that take TPU 95 and Polypropylene filaments and apply them to lycra textile sheets, to form active composite panels. The process involves a parametrised design, actualized through a particular fabrication process. Our findings document the investigation into mapping between the initial two-dimensional geometries and their resulting three-dimensional doubly-curved forms, as well as accomplishments and products of the resulting, partly serendipitous, design process

    Validation of techniques to mitigate copper surface contamination in CUORE

    Get PDF
    In this article we describe the background challenges for the CUORE experiment posed by surface contamination of inert detector materials such as copper, and present three techniques explored to mitigate these backgrounds. Using data from a dedicated test apparatus constructed to validate and compare these techniques we demonstrate that copper surface contamination levels better than 10E-07 - 10E-08 Bq/cm2 are achieved for 238U and 232Th. If these levels are reproduced in the final CUORE apparatus the projected 90% C.L. upper limit on the number of background counts in the region of interest is 0.02-0.03 counts/keV/kg/y depending on the adopted mitigation technique.Comment: 10 pages, 6 figures, 6 table
    corecore