161 research outputs found

    Increased receptor-mediated gene delivery to the liver by protamine-enhanced-asialofetuin-lipoplexes

    Get PDF
    A novel lipidic vector composed of DOTAP/Chol liposomes, asialofetuin (AF), protamine sulfate and DNA has been developed. The resulting protamine-AF-lipoplexes improved significantly the levels of gene expression in cultured cells and in the liver upon i.v. administration. Lipoplexes containing the optimal amount of AF (1 μg/μg DNA) showed a 16-fold higher transfection activity in HepG2 cells than non-targeted (plain) complexes. The uptake by cells having asialoglycoprotein receptors (ASGPr) on their plasma membrane was decreased by the addition of free AF, indicating that AF-lipoplexes were taken up specifically by cells via ASGPr-mediated endocytosis. Results from transfections performed in cells defective in ASGPr, ie HeLa cells, confirmed this mechanism. By addition of the condensing peptide, protamine sulfate, smaller complexes were obtained, which enhanced even more the uptake of AF-complexes in HepG2 cells and in the liver. The optimal amount of protamine was 0.4 μg/μg DNA, and gene expression was about 5-fold over that obtained with AF-lipoplexes in the absence of the peptide, and 75-fold higher than that with plain conventional lipoplexes. Protamine-AF-lipoplexes increased by a factor of 12 luciferase gene expression in the liver of mice administered systemically via the tail vein, compared to plain complexes. In summary, our findings extend the scope of previous studies where AF-lipoplexes were used to Introduce DNA into hepatocytes. The combination of targeting and protamine condensation obviated the need for partial hepatectomy, commonly required to obtain efficient gene delivery in this organ. Since protamine sulfate has been proven to be non-toxic in humans, the novel liver-specific vector described here may be useful for the delivery of clinically important genes to this organ

    Synthesis of functionalized triblock copolyesters derived from lactic acid and macrolactones for bone tissue regeneration

    Full text link
    Synthetic and functional grafts are a great alternative to conventional grafts. They can provide a physical support and the precise signaling for cells to heal damaged tissues. In this study, a novel RGD peptide end-functionalized poly(ethylene glycol)-b-poly(lactic acid)-b-poly(globalide)-b-poly(lactic acid)-b-poly(ethylene glycol) (RGD-PEG-PLA-PGl-PLA-PEG-RGD) is synthetized and used to prepare functional scaffolds. The PGl inner block is obtained by enzymatic ring-opening polymerization of globalide. The outer PLA blocks are obtained by ring-opening polymerization of both, l-lactide or a racemic mixture, initiated by the α-ω-telechelic polymacrolactone. The presence of PGl inner block enhances the toughness of PLA-based scaffolds, with an increase of the elongation at break up to 300% when the longer block of PGl is used. PLA-PGl-PLA copolymer is coupled with α-ω-telechelic PEG diacids by esterification reaction. PEGylation provides hydrophilic scaffolds as the contact angle is reduced from 114° to 74.8°. That difference improves the contact between the scaffolds and the culture media. Moreover, the scaffolds are functionalized with RGD peptides at the surface significantly enhancing the adhesion and proliferation of bone marrow-derived primary mesenchymal stem cells and MC3T3-E1 cell lines in vitro. These results place this multifunctional polymer as a great candidate for the preparation of temporary grafts

    Dielectric relaxations in poly(glycidyl phenyl ether): Effects of microstructure and cyclic topology

    Get PDF
    Cyclic and linear, isoregic and aregic, and isotactic and atactic poly(glycidyl phenyl ether) (PGPE) with molecular weights up to Mw = 5.5 kg/mol are synthesized by ring-opening polymerization of glycidyl phenyl ether. Initiation with tetrabutylammonium fluoride leads to isoregic linear polymers with ~95% regular linkages, and initiation with B(C6F5)3 and B(C6F5)3/water leads to aregic cyclic and linear polymers, respectively, with ~50% regular linkages as quantified by 13C NMR. Local, segmental, and chain dynamics in PGPE is investigated by broadband dielectric spectroscopy (10–2–106 Hz). The ß-relaxation for linear PGPE is separated into two contributions arising from the motions of side groups and end groups with activation energies of 35.4 and 23.8 kJ/mol, respectively. The ß-relaxation process for cyclic PGPE shows the same activation energy as that shown by the side-group contribution in linear PGPE, indicating that topology does not play a key role on the side-group local dynamics. Moreover, cyclic PGPE samples show higher calorimetric and dynamic glass transition temperatures as well as lower dynamic fragility compared to linear chains. Unexpectedly from topological considerations, cyclic PGPE shows low frequency dielectric contributions that can be attributed to short wavelength internal ring motions and that are detectable by dielectric relaxation due to the aregic nature of the rings.Peer ReviewedPostprint (author's final draft

    High Voltage Mg-Doped Na 0.67 Ni 0.3– x Mg x Mn 0.7 O 2 ( x = 0.05, 0.1) Na-Ion Cathodes with Enhanced Stability and Rate Capability

    Get PDF
    Magnesium substituted P2-structure Na0.67Ni0.3Mn0.7O2 materials have been prepared by a facile solid-state method and investigated as cathodes in sodium-ion batteries. The Mg-doped materials described here were characterized by X-ray diffraction (XRD), 23Na solid-state nuclear magnetic resonance (SS-NMR), and scanning electron microscopy (SEM). The electrochemical performance of the samples was tested in half cells vs Na metal at room temperature. The Mg-doped materials operate at a high average voltage of ca. 3.3 V vs Na/Na+ delivering specific capacities of ∼120 mAh g–1, which remain stable up to 50 cycles. Mg doping suppresses the well-known P2–O2 phase transition observed in the undoped composition by stabilizing the reversible OP4 phase during charging (during Na removal). GITT measurements showed that the Na-ion mobility is improved by 2 orders of magnitude with respect to the parent P2–Na0.67Ni0.3Mn0.7O2 material. The fast Na-ion mobility may be the cause of the enhanced rate performance

    A gemini cationic lipid with histidine residues as a novel lipid-based gene nanocarrier: a biophysical and biochemical study

    Get PDF
    This work reports the synthesis of a novel gemini cationic lipid that incorporates two histidine-type head groups (C3(C16His)2). Mixed with a helper lipid 1,2-dioleoyl-sn-glycero3-phosphatidyl ethanol amine (DOPE), it was used to transfect three different types of plasmid DNA: one encoding the green fluorescence protein (pEGFP-C3), one encoding a luciferase (pCMV-Luc), and a therapeutic anti-tumoral agent encoding interleukin-12 (pCMV-IL12). Complementary biophysical experiments (zeta potential, gel electrophoresis, small-angle X-ray scattering (SAXS), and fluorescence anisotropy) and biological studies (FACS, luminometry, and cytotoxicity) of these C3(C16His)2/DOPE-pDNA lipoplexes provided vast insight into their outcomes as gene carriers. They were found to efficiently compact and protect pDNA against DNase I degradation by forming nanoaggregates of 120–290 nm in size, which were further characterized as very fluidic lamellar structures based in a sandwich-type phase, with alternating layers of mixed lipids and an aqueous monolayer where the pDNA and counterions are located. The optimum formulations of these nanoaggregates were able to transfect the pDNAs into COS-7 and HeLa cells with high cell viability, comparable or superior to that of the standard Lipo2000*. The vast amount of information collected from the in vitro studies points to this histidine-based lipid nanocarrier as a potentially interesting candidate for future in vivo studies investigating specific gene therapies

    A Non-Viral Plasmid DNA Delivery System Consisting on a Lysine-Derived Cationic Lipid Mixed with a Fusogenic Lipid

    Get PDF
    The insertion of biocompatible amino acid moieties in non-viral gene nanocarriers is an attractive approach that has been recently gaining interest. In this work, a cationic lipid, consisting of a lysine-derived moiety linked to a C12 chain (LYCl) was combined with a common fusogenic helper lipid (DOPE) and evaluated as a potential vehicle to transfect two plasmid DNAs (encoding green fluorescent protein GFP and luciferase) into COS-7 cells. A multidisciplinary approach has been followed: (i) biophysical characterization based on zeta potential, gel electrophoresis, small-angle X-ray scattering (SAXS), and cryo-transmission electronic microscopy (cryo-TEM); (ii) biological studies by fluorescence assisted cell sorting (FACS), luminometry, and cytotoxicity experiments; and (iii) a computational study of the formation of lipid bilayers and their subsequent stabilization with DNA. The results indicate that LYCl/DOPE nanocarriers are capable of compacting the pDNAs and protecting them efficiently against DNase I degradation, by forming Lα lyotropic liquid crystal phases, with an average size of ~200 nm and low polydispersity that facilitate the cellular uptake process. The computational results confirmed that the LYCl/DOPE lipid bilayers are stable and also capable of stabilizing DNA fragments via lipoplex formation, with dimensions consistent with experimental values. The optimum formulations (found at 20% of LYCl content) were able to complete the transfection process efficiently and with high cell viabilities, even improving the outcomes of the positive control Lipo2000*

    Carbohydrate-based PBT copolyesters from a cyclic diol derived from naturally occurring tartaric acid: a comparative study regarding melt polycondensation and solid-state modification

    No full text
    2,3-O-Methylene-L-threitol (Thx) is a cyclic carbohydrate-based diol prepared by acetalization and subsequent reduction of the naturally occurring tartaric acid. The structure of Thx consists of a 1,3-dioxolane ring with two attached primary hydroxyl groups. Two series of partially bio-based poly(butylene terephthalate) (PBT) copolyesters were prepared using Thx as a comonomer by melt polycondensation (MP) and solid-state modification (SSM). Fully random copolyesters were obtained after MP using mixtures of Thx and 1,4-butanediol in combination with dimethyl terephthalate. Copolyesters with a unique block-like chemical microstructure were prepared by the incorporation of Thx into the amorphous phase of PBT by SSM. The partial replacement of the 1,4-butanediol units by Thx resulted in satisfactory thermal stabilities and gave rise to an increase of the Tg values, this effect was comparable for copolyesters prepared by MP and SSM. The partially bio-based materials prepared by SSM displayed higher melting points and easier crystallization from the melt, due to the presence of long PBT sequences in the backbone of the copolyester. The incorporation of Thx in the copolyester backbone enhanced the hydrolytic degradation of the materials with respect to the degradation of pure PBT.Peer ReviewedPostprint (published version

    Role of liposome and peptide in the synergistic enhancement of transfection with a lipopolyplex vector

    Get PDF
    Lipopolyplexes are of widespread interest for gene therapy due to their multifunctionality and high transfection efficiencies. Here we compared the biological and biophysical properties of a lipopolyplex formulation with its lipoplex and polyplex equivalents to assess the role of the lipid and peptide components in the formation and function of the lipopolyplex formulation. We show that peptide efficiently packaged plasmid DNA forming spherical, highly cationic nanocomplexes that are taken up efficiently by cells. However, transgene expression was poor, most likely due to endosomal degradation since the polyplex lacks membrane trafficking properties. In addition the strong peptide-DNA interaction may prevent plasmid release from the complex and so limit plasmid DNA availability. Lipid/DNA lipoplexes, on the other hand, produced aggregated masses that showed poorer cellular uptake than the polyplex but contrastingly greater levels of transgene expression. This may be due to the greater ability of lipoplexes relative to polyplexes to promote endosomal escape. Lipopolyplex formulations formed spherical, cationic nanocomplexes with efficient cellular uptake and significantly enhanced transfection efficiency. The lipopolyplexes combined the optimal features of lipoplexes and polyplexes showing optimal cell uptake, endosomal escape and availability of plasmid for transcription, thus explaining the synergistic increase in transfection efficiency
    • …
    corecore