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ABSTRACT 

Cyclic and linear, isoregic and aregic, and isotactic and atactic poly(glycidyl phenyl 

ether) (PGPE) with molecular weights up to Mw=5.5 kg/mol are synthesized by ring-

opening polymerization of glycidyl phenyl ether. Initiation with tetrabutylammonium 

fluoride leads to isoregic linear polymers with ∼95% regular linkages, and initiation 

with B(C6F5)3 and B(C6F5)3/water leads to aregic cyclic and linear polymers, 

respectively, with ∼50% regular linkages as quantified by 13C NMR. Local, segmental, 

and chain dynamics in PGPE is investigated by broadband dielectric spectroscopy (10-2-

106 Hz). The β-relaxation for linear PGPE is separated into two contributions arising 

from the motions of side groups and end groups with activation energies of 35.4 and 

23.8 kJ/mol, respectively. The β-relaxation process for cyclic PGPE shows the same 

activation energy as that shown by the side-group contribution in linear PGPE, 

indicating that topology does not play a key role on the side-group local dynamics. 

Moreover, cyclic PGPE samples show higher calorimetric and dynamic glass transition 

temperatures, as well as lower dynamic fragility compared to linear chains. 

Unexpectedly from topological considerations, cyclic PGPE shows low frequency 

dielectric contributions that can be attributed to short wavelength internal ring motions, 

and that are detectable by dielectric relaxation due to the aregic nature of the rings. 
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INTRODUCTION 

Physical properties of polymers are directly associated with the microstructure of the 

main chain, size, and chain topology. Cyclic polymers are a class of topological 

polymers characterized by the absence of chain ends.1 They exhibit increased glass 

transition temperatures (Tg), smaller hydrodynamic volumes, and lower intrinsic 

viscosities when compared to their linear analogues. Such differences arise from the 

excess of mobility provided by end-groups in linear chains, the frustration of segmental 

rotational diffusion in small rings, and the much smaller configurational entropy of 

cyclic chains compared to their linear analogues.2 Detailed discussion of the physical 

and theoretical aspects of cyclic polymers has been reviewed elsewhere.3-6  

Broadband dielectric spectroscopy (BDS) can be used to probe local, segmental and 

chain dynamics of polymers having dipole moment components either in the backbone 

or in the side group.7 Although this technique provides access to a large dynamic range, 

very few studies elucidating the effect of cyclic topology on the dynamics have been 

carried out by BDS, in comparison with other techniques much more utilized such as 

NMR,8 rheology,9, 10 and neutron diffraction techniques.5, 11 Previous BDS study on the 

segmental dynamics of cyclic poly(dimethyl siloxane) (PDMS) was carried out by Krist 

et al.2 They observed distinct molecular weight dependence of the α-relaxation for 

cyclic and linear chains in agreement with a calorimetric study on similar polymer 

carried out by Semlyen et al.12 The α-relaxation (glass transition temperature, Tg, in the 

work of Semlyen et al.12) of linear chains was observed to shift to lower temperatures 

with decreasing molecular weight, but for cyclic chains it was observed to shift to 

higher temperatures.  
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Poly(glycidyl phenyl ether) (PGPE), a polyether with pendant methoxy phenyl groups, 

is characterized by large dipole moments. This polymer is able to crystallize when its 

side groups are ordered in a single orientation with respect to the polymer backbone; 

that is the isotactic form of PGPE.13 However, in its atactic form, PGPE is totally 

amorphous, making possible a complete characterization of its molecular dynamics in a 

broad range of temperatures without interference of crystallization. All these convenient 

characteristics provide an opportunity to investigate the influence of the chain topology 

and the microstructure on the polymer dynamics in a broad range of frequencies and 

temperatures. 

Herein, we study the relaxation dynamics of cyclic and linear PGPE by means of BDS.  

Linear and cyclic PGPE exhibit three dielectric relaxations: β-relaxation, α-relaxation 

and normal mode (NM). In general, the β-relaxation is related to a specific motion of a 

group of atoms, either in the polymer backbone, in the side groups and/or in the end-

groups;7 being the latter of relevance in this study. The α-relaxation is originating from 

segmental-scale motions and the NM is originating from chain motions.7  

The dielectric NM has been used to investigate chain dynamics and chain dimensions in 

polymers with complex architectures.14, 15 Some examples include the study of the NM 

relaxation in star-branched polyisoprene (PI),16 star-branched polyisoprene-polystyrene 

(PI-PS) block copolymer,17 PI confined in nanometer-size pores,18 PI-PDMS block 

copolymers19 and poly(alkylene oxide)s with side chains of different size.20 Cyclic 

polymers are expected to have net zero dipole moment due to cancellation of the dipole 

moment vectors parallel to the chain contour. However, this is only true for isoregic 

polymers, where all the repeating units are oriented in the same direction, but not for 

polymers containing regio-irregularities.  
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Isoregic structures are generated by the formation of head-to-tail (HT) or tail-to-head 

(TH) linkages during polymerization, whereas aregic structures are generated by the 

additional formation of head-to-head (HH) and tail-to-tail (TT) linkages. In the ring-

opening polymerization (ROP) of monosubstituted epoxides, these regio-errors can 

frequently occur.21 Enchainment can be produced by (1) attack at the methylene, or (2) 

attack at the methine (Scheme 1). If only one process occurs, then an isoregic polymer 

is obtained. If both processes are produced, then an aregic polymer is obtained. 

 

Scheme 1. Isoregic and aregic polyethers obtained by ring-opening polymerization of 

monosubstituted epoxides. Enchainment by attack at the methylene (1) and/or attack at 

the methine (2). 

 

In the present study, cyclic PGPE is obtained by zwitterionic ring-opening 

polymerization (ZROP) of glycidyl phenyl ether (GPE) with a Lewis acid catalyst, 

B(C6F5)3, in anhydrous conditions,22 utilizing what is called a ring-expansion 

polymerization strategy.23 Linear PGPE was obtaining by using two synthetic pathways: 

1) ZROP of GPE with B(C6F5)3, in the presence of water22 and 2) anionic ROP of GPE 
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with a thermally latent anionic initiator, tetrabutylammonium fluoride (TBAF).24 

Quantitative analysis of the microstructure by means of 13C NMR shows that cyclic and 

linear PGPE obtained by ZROP contain high levels of regio-irregularities, whereas 

linear PGPE obtained by anionic ROP is almost isoregic. Moreover, in order to generate 

PGPE samples of different degrees of crystallinity, we also exerted some control over 

the stereochemistry by using optically pure (S)-GPE and a mixture of (S/R)-GPE 

enantiomers. Semicrystalline linear PGPE samples were obtained with (S)-GPE, 

whereas totally amorphous samples were obtained with the (S/R)-GPE enantiomers. 

The provision of different types of PGPE samples in this work, linear and cyclic, 

isoregic and aregic, and isotactic and atactic, allowed us to study in detail the effects of 

microstructure and cyclic topology on the molecular mobility at different spatial scales 

by dielectric spectroscopy. 

 

EXPERIMENTAL SECTION 

Materials. B(C6F5)3 (95%), optically pure (S)-GPE (≥97% sum of enantiomers, GC), a mixture 

of (S/R)-GPE enantiomers (99 % purity) and water (molecular biology reagent) were purchased 

from Sigma-Aldrich. GPE, dichloromethane (CH2Cl2) and methanol were dried over CaH2, 

degassed and distilled in a vacuum line before use. B(C6F5)3 was sublimed in vacuum at 90 ºC 

and stored in a glovebox. All reagents were manipulated and transferred either by distillation or 

under argon in a vacuum line.  

Synthesis of linear PGPE. Linear PGPE samples were synthesized by two methods, living 

anionic ROP (Method-A) and ZROP (Method-Z). Method-A was based on a method reported 

by Endo et al.24 and Method-Z was based on a method previously reported by us.22 To identify 
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the different synthesized compounds, the following conventions are applied: L is assigned to 

linear samples and C to cyclic samples. As a subscript, S is assigned to polymers synthesized 

from optically pure (S)-GPE monomer, and SR, to those synthesized from (S/R)-GPE 

enantiomers. (A) is assigned to polymers synthesized by anionic ROP and (Z) to polymers 

synthesized by ZROP. 

Method-A: (S)-GPE and (S/R)-GPE were polymerized by initiation with tetrabutylammonium 

fluoride (TBAF) (hereafter denoted as LS(A) and LSR(A) samples, Table 1). TBAF (1M) in THF 

solution (0.7 mL) was added to a Schlenk under Argon. THF was evaporated under vacuum, 

and GPE (2 mL) was added. The polymerization was conducted at 60 °C in argon. To generate 

PGPE samples of different molecular weights, the reaction time was varied from 15 min to 6 h, 

or upon the addition of 2 mL extra of GPE after 6 h of reaction, according to reference 24. The 

crude was dissolved in CH2Cl2 and precipitated in methanol. Precipitation was repeated until 

total disappearance of TBAF, as verified by 1H NMR spectroscopy.  

Method-Z: (S)-GPE and (S/R)-GPE were polymerized by initiation with a mixture of B(C6F5)3 

and water (hereafter denoted as LS(Z) and LSR(Z) samples, Table 2). B(C6F5)3 (4 mg), CH2Cl2 (4 

mL), water (0.2 ml) and GPE (1 mL) were added (in this order) to a Schlenk flask under argon 

atmosphere. After 24 h, the solvent was evaporated, and the remaining liquid (still not viscous) 

was heated for 24 h at 40 ºC. The crude was dissolved in CH2Cl2 and precipitated in methanol. 

Synthesis of cyclic PGPE. Cyclic PGPE samples were synthesized by ZROP of (S)-GPE and 

(S/R)-GPE according to our previously published method22 (hereafter denoted as CS(Z) and 

CSR(Z) samples, Table 2). All polymerization reactions were performed under argon at room 

temperature. In a typical experiment, B(C6F5)3 (4 mg), CH2Cl2 (10 mL) and GPE (1 mL) were 

added (in this order) to a Schlenk flask under argon atmosphere. After 24 h of reaction, 0.2 mL 

of dry methanol was added to the reaction. The solution was partially concentrated by removing 
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half of the solvent mixture in the vacuum line. Finally, the polymer was precipitated in 

methanol.  

All the PGPE samples were dried in a vacuum oven at 80 ºC overnight before use. Experimental 

procedures to chemically characterize the PGPE samples [MALDI-ToF MS, size exclusion 

chromatography (SEC) and 13C NMR data] are reported in the Supplementary Information 

document. 

Table 1. Linear PGPE samples obtained by living anionic ROP at 60 ºC (Method-A).24 

Entry Sample Monomer Mw
b 

(kg/mol) 

Mw/Mn
b Yieldc  

(%) 

1 LS (A) (S)-GPE 2.1 1.02 60 

2 LSR (A) (S/R)-GPE 2.2 1.06 70 

3 LSR (A) (S/R)-GPE 3.0 1.07 63 

4a LSR (A) (S/R)-GPE 4.8 1.10 80 

a2 mL of GPE were initially polymerized for 6 h followed by further addition of 2 mL of GPE. 
The reaction was stopped after 16 h of second monomer addition. bObtained by SEC.  cObtained 
by weight of the precipitated products. 

 

Table 2. Linear and cyclic PGPE samples obtained by ZROP at 25 ºC (Method-Z).22  

Entry Sample Monomer n(GPE)/ 

n[B(C6F5)3] 

(mol/mol) 

c(GPE)a 

(mol/L) 

t 

(h) 

Mw
c 

(kg/mol) 

Mw/

Mn
c 

Yieldd  

(wt%) 

Linear samples 

5 LS (Z) (S)-GPE 935 1.5 48b 2.1 1.02 65 

6 LSR (Z) (S/R)-GPE 94 2.4 48b 1.3 1.03 60 

7 LSR (Z) (S/R)-GPE 935 2.4 48b 5.5 1.22 62 
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Cyclic samples 

8 CS (Z) (S)-GPE 935 0.4 24 1.9 1.30 53 

9 CSR (Z) (S/R)-GPE 935 0.4 24 1.4 1.26 50 

10 CSR (Z) (S/R)-GPE 752 0.6 24 5.2 1.23 48 

aMonomer concentration in CH2Cl2. b24 h at 25 ºC followed by solvent evaporation and heating 
at 40 ºC for further 24 h. cObtained by SEC.  dObtained by weight of the precipitated products.  

 

Differential Scanning Calorimetry. DSC measurements were carried out on ∼5 mg specimens 

using a Q2000 TA Instruments in standard mode. All samples were measured by placing the 

samples in sealed aluminum pans, cooling to -100 ºC at 20 ºC/min and heating to 150 ºC at 20 

ºC/min (1st run). Then, samples were cooled back to -100 ºC at 20 ºC/min (2nd run), and finally 

heated to 150 ºC at 20 ºC/min (3rd run). Ls(A) was also measured by following a quenching 

protocol. The sample was first molten at 150 ºC, then cooled at the highest cooling ramp 

attainable by the equipment, and heated back to 150 ºC at 20 ºC/min. A helium flow rate of 25 

mL/min was used throughout. 

Broadband dielectric spectroscopy. A broadband and high-resolution dielectric spectrometer, 

Novocontrol Alpha, was used to measure the complex dielectric function, ε*(ω)= ε´(ω) – i ε 

´´(ω), ω= 2πf, in the frequency (f) range from f = 10-2 Hz to f = 106 Hz. Samples were placed 

between parallel gold-plated electrodes with 20 mm diameter and 0.1 mm thick, by using finely 

cut 0.1 mm thick cross-shaped Teflon as spacer. To remove the water traces, the samples were 

heated within the cell at 420 K for 1-2 h until constant conductivity. The data were collected 

isothermally during cooling from 420 K to 130 K. The temperature was controlled within ± 0.1 

K using a Novocontrol Quatro cryostat that uses a continuous nitrogen-jet flow.  

 

RESULTS 
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Enantiopure (S)-GPE and a mixture of (S/R)-GPE enantiomers were polymerized with 

TBAF, B(C6F5)3/H2O or B(C6F5)3 as a catalyst (Scheme 2). The first two catalysts lead 

to the generation of linear PGPE22, 24 and the third one to the generation of cyclic 

PGPE.22 End groups of linear PGPE synthesized with TBAF and B(C6F5)3/H2O differ in 

composition. In the first case, linear chains terminate with a fluorine atom and a 

hydroxyl group, and in the second case, terminate with two hydroxyl groups (see 

MALDI-TOF data in the Supplementary Information). Stereo- and regiochemistry of 

synthesized PGPE were also found to be different. PGPE obtained by initiation with 

TBAF are almost isoregic whereas those obtained with B(C6F5)3 are aregic. Scheme 2 

summarizes the main chemical and physical characteristics of the obtained polymers, 

which are described in detail in the following sections.  
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Scheme 2. Topology, microstructure and physical properties of PGPE obtained from 

enantiopure (S)-GPE and a mixture of (S/R)-GPE enantiomers via anionic and 

zwitterionic ROP.  

 

Polymer Microstucture by 13C NMR Spectroscopy 

Analysis of polymer microstucture was done by 13C NMR with the help of previously 

published data on the microstructure of PGPE.25 Figure 1 shows 13C NMR spectra of 

linear PGPE samples in acetone-d6, to which small amounts of trichloroacetyl 

isocyanate (TAI) derivatizing reagent were added. Upon the addition of TAI, the 

terminal hydroxyl groups are converted into urethane groups. The 13C NMR signals of 

carbons in α and β positions to the urethane groups appear downfield and upfield 

shifted, respectively, allowing an exhaustive identification of end-groups and 

consequently, allowing the identification of signals corresponding only to the polymer 

backbone. 

Signals at ∼79.1 ppm correspond to methine carbons, and are sensitive to triad 

regiosequence arrangements. Signals at ∼71.5 ppm correspond to methylene carbons of 

the main chain, and are also sensitive to triad regiosequence distribution. Signals at 69 

ppm corresponds to methylene carbons of the side chain, and are little sensitive to 

tacticity or regicity. Assignment of terminal groups, as well as of the different triad 

regiosequences generated by HH, HT, TH and TT linkages are indicated in the spectra. 

Ls(A) and LSR(A) exhibit high intensity signals corresponding to regio-regular triads 

with [000, 111] configurations produced by all HT or TH linkages (Scheme S1).  These 

samples also exhibit the presence of signals of lower intensity corresponding to regio-
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irregular triads with [001, 011] configurations produced by HT, HT and TT or by HT, 

TH and TH linkages, as well as others signals corresponding to end-groups (Figure S4). 

This assignment differs to the one in reference 25, and is based on the type of end 

groups observed in the NMR spectra for these samples, where no CH2OH end-group 

was observed and excludes the presence of HH linkages. In the Ls(Z) and LSR(Z) 

samples, it is remarkable the presence of  signals corresponding to all kind of aregic 

sequences: [010, 101], [001, 011] and [100, 110]. Assignment of methylene signal 

corresponding to triad [100, 110] is based on the shielding effect produced by one 

additional carbon in gamma position for this triad, and the peak that appears downfield 

shifted at 72.4 ppm was then assigned to [010, 101] triad.   

Integration of triad signals and quantification of the amounts of regio-irregular linkages 

are reported in Table 3. As a result, we obtained that the polymerization mediated by 

TBAF leads to a high level of regio-regularity (95-97 % of regio-regular linkages) and 

to a high level of tacticity when the optically pure (S)-GPE monomer is employed. The 

use of a mixture of (S/R)-GPE enantiomers leads to polymers with similar regio-

regularity but with an atactic stereoregularity (Figure S5). In contrast, the 

polymerization mediated by B(C6F5)3, either in anhydrous or dry conditions, leads to a 

high level of regio-irregularity, and as a consequence, to the generation of aregic 

polymers. 
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Figure 1. 13C NMR spectra of PGPE samples in (CD3)2CO at 25 ºC upon the addition of 

TAI (Entries 1 and 2 of Table 1 and Entries 5 and 6 of Table 2). LS(A) sample was 

recorded at 50 ºC due to solubility problems at room temperature.  

 

Table 3. Percentage of regiosequences and amounts of regio-irregularities as obtained 

in (CD3)2CO upon the addition of trichloroacetyl isocyanate derivatizing agent. 

Entry Sample Triads (mol%) Irregular linkages (%) 

  000-111 001-011 100-110 010-101  

1 LS(A) 93.7 6.3 - - 3.1 

2 LSR(A) 89.7 10.3 - - 5.1 

5 LS(Z) 27.9 27.0 21.7 23.4 47.7 

6 LSR(Z) 30.6 27.5 20.3 21.6 45.5 

10 CSR(Z) 24.3 25.8 20.1 29.8 52.7 
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End-group analysis by 13C NMR indicates that PGPE samples initiated by TBAF [L(A) 

series] terminate with CHOH and CH2F groups and does not show the presence of 

CH2OH terminal groups. In the PGPE samples initiated by B(C6F5)3/H2O [L(Z) series], 

the majority of end groups were found to be CHOH. Minor amounts of CH2OH were 

also found. 

 

Crystallinity  

The degree of crystallinity (χC) of LS(A) was determined to be 34% by XRD (Figure 

S6). This is the most crystalline sample of the studied series as expected from its high 

level  of both regicity and tacticity. In contrast to the rest of samples, its physical 

appearance is a solid powder, which is a qualitative indication of crystallinity. DSC data 

of LS(A) (Figure 2a) shows four melting processes (Tm1, Tm2, Tm3 and Tm4), which have 

been interpreted as to be originating from different isomorphic crystallites in isoregic 

and isotactic PGPE.13 LS(A) crystallizes at 55 ºC upon cooling at 20 ºC/min (Figure 2a). 

After being quenched from the melt, LS(A) shows a cold crystallization peak at 60 ºC at 

a heating rate of 20 ºC/min (Figure 2d).   
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Figure 2. DSC data of semicrystalline PGPE samples: Entries 1, 2 of Table 1 and Entry 

7 of Table 2. (a, b, c) 1st and 2nd runs (20 ºC/min) of samples previously cooled at -100 

ºC from room temperature. (d) Heating run (20 ºC/min) for a quenched LS(A) sample. 

(e) and (f) 3rd heating runs (20 ºC/min) after cooling in experiments (b) and (c), 

respectively.  

 

In contrast to DSC data of LS(A), the LSR(A) and LS(Z) samples showed two small 

melting processes and did not crystallize upon cooling (Figures 2b and 2c). As 

observed, 3rd heating runs in LSR(A) and LS(Z) samples (Figures 2e and 2f) do not show 

any sign of melting either. Crystallization in these samples occurs very slowly, in 

approximately two days at 40 ºC. This slow crystallization facilitates the study of fully 
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amorphous samples. ΔHm values of LSR(A) samples were observed to increase slightly 

with the molecular weight (Table 4). 

 

Table 4. Crystallization/melting characteristics obtained from the DSC data of 

semicrystalline PGPE samples. 

Entry Sample Tc 

(ºC) 

Tm1 

(ºC) 

Tm2 

(ºC) 

Tm3 

(ºC) 

Tm4 

(ºC) 

ΔHm 

(J/g) 

χc  

(%) 

1 LS (A) 55 60 96 108 120 64 34a 

2 LSR (A) - 55 91 - - 13 7b 

3 LSR (A) - 53 - 105 - 14 8b 

4 LSR (A) - 52 - 105 - 16 9b 

5 LS (Z) - 55 96 - - 4 2b 

aDetermined by XRD and used as a reference for the rest of samples. bDetermined from 
the ΔHm values.  

 

The degree of crystallinity of LSR(A) and LS(Z) samples was determined from the ΔHm 

values, estimating that 100 % of crystallinity corresponds to ΔHm = 188 J/g, as obtained 

from XRD and DSC analysis of LS (A). As a result, χC of LSR(A) was 7-9 %, whereas 

that of LS(Z) was only 2 %.  

As observed in our PGPE samples, crystallinity is notably reduced in going from LS(A) 

to LSR(A) as a consequence of the loss of tacticity while keeping similar regicity. 

Crystallinity is further reduced in going from LSR(A) to LS (Z) as a consequence of an 
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increase of regio-irregularities. However, in spite of the significant amounts of regio-

irregular linkages in LS(Z), this sample is the only one of the whole polymer series 

obtained by ZROP that is able to crystallize, probably due to the presence of small 

isotactic sequences in the chain. Interestingly, CS(Z), with similar stereo- and 

regiochemistry to LS(Z), did not show any sign of crystallization. It is likely that 

structural constraints due to the cyclic chain topology of CS(Z) limit the formation of 

crystals, which is even more critical at the low levels of crystallinity shown by our 

samples. Distinctive crystallization behavior has been previously observed for cyclic 

polytetrahydrofuran (PTHF),26 and cyclic poly(ε-caprolactone)27, 28 compared to their 

linear counterparts, although with opposite results: cyclic PTHF crystallized at a slower 

rate than the linear analog and cyclic poly(ε-caprolactone) crystallized at a faster rate 

than the linear analog.  

 

Glass transition temperature 

Glass transition temperature of amorphous PGPE (obtained in all cases from (S/R)-GPE 

monomer) are plotted as a function of the molecular weight in Figure 3. In linear PGPE 

samples of the series LSR(A), the molecular weight dependence of the glass transition 

temperature can be described by the Kanig-Ueberreiter equation,29 

1
1

−

∞











+=

wg
g M

K
T

T          (1) 

where K was found to be 2.3 x 10-4 mol/kg, and the high molecular weight limiting 

value, Tg
∞ = 282 K. Tg of LSR(Z) samples were in good agreement with the fitted curve.  
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Cyclic PGPE samples showed higher Tg than linear samples, as expected in the low 

molecular weight region.6 This behavior has been found in other cyclic polymers such 

as PDMS,12 polystyrene (PS),30, 31 poly(2-vinylpyridine),32 poly(methyl methacrylate)33 

poly(phenylmethylsiloxane)34 as well as in multicyclic topologies.35 Moreover, cyclic 

PGPE samples exhibited a weaker increase in Tg with increasing molecular weight 

compared to their linear counterparts in agreement with the results found for PS in 

reference 36. On the contrary, decreasing Tg with increasing Mw has been found for 

cyclic PDMS12 in agreement with theoretical predictions.37   

 

Figure 3. Solid symbols: Calorimetric onset Tg data of PGPE samples as a function of 

the weight average molecular weight. Tg values of all PGPE samples were obtained 

from the 3rd heating runs. Dashed blue line represents the fit to Equation 1. Dotted black 

line shows the high molecular weight limiting value, Tg
∞, found for the LSR(A) series. 

Open symbols: Dielectric Tg data (Tg
BDS) (see the text below). 
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Dielectric Relaxations 

Figure 4a shows an isochronal representation of ε’’ for two LSR (A) samples of different 

molecular weight, which were firstly dried for 1-2 hours at 420 K within the equipment 

and subsequently cooled to 130 K by registering isothermically the dielectric spectra 

every 5 K. Under these experimental conditions, completely dry samples can be 

measured in amorphous state. We rigorously checked that the relaxation peak associated 

with water had been removed (Figure S7). In Figure 4a, the loss peaks appearing above 

∼274 K are assigned to the α-relaxation and NM relaxation in agreement with previous 

dielectric relaxation studies of polyethers with pendant aliphatic ether groups such as 

poly(isopropyl glycidyl ether), poly(n-butyl glycidyl ether) and poly(tert-butyl glycidyl 

ether).38 The α-relaxation peak shows a small shift to higher temperatures with the 

molecular weight, in agreement with the Tg differences observed by DSC. The NM peak 

shows stronger molecular weight dependence, as expected, exhibiting a well-defined 

peak for the higher molecular weight sample, but strong overlapping with the α-

relaxation peak for the lower molecular weight sample. The loss peak appearing at 

temperatures well below Tg is designated as β-relaxation. This relaxation process has 

been identified in reference 38 as originating from side group rotations. In our PGPE 

samples, the β-relaxation peak appears at higher temperatures than that in polyethers 

with pendant aliphatic ether groups,38 likely due to the bulkier nature of the phenyl side 

group. The β-relaxation also shows molecular weight dependence as observed by a 

decrease of intensity with increasing molecular weight at the low temperature side.  
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Figure 4. a) Isochronal representation of the dielectric loss (ε’’) at 50 kHz for two LSR 

(A) samples of different molecular weight. b) Relaxation map for LSR (A) with Mw=4.8 

kg/mol. 

 

The peak relaxation times (τ) of the three dielectric relaxations observed for a LSR (A) 

sample are plotted as a function of the inverse temperature in Figure 4b. The β-

relaxation shows Arrhenius temperature dependence, whereas the α-relaxation and the 

NM show the typical non-Arrhenius behavior. Moreover, the α-relaxation and the NM 

differ in the temperature dependence, being more separated at high temperatures. 

 

The three dielectric relaxations here described are analyzed in detail in the following 

sections.  
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Dielectric relaxations at T<Tg 

Figure 5a shows the frequency dependence of the ε’’ for LSR(A) of two molecular 

weights at 170 K. At the high frequency side, the spectra show decreasing intensity with 

increasing molecular weight, which is undoubtedly attributed to the contributions of 

end-group motions. At increasing molecular weights, the chain ends become more 

diluted and their contribution to the β-relaxation is mitigated. To resolve the component 

peaks of the β-relaxation coming from end-groups (ε’’EG (ω)) and side-groups (ε’’Mw→∞ 

(ω)), we assumed that, for a given Mw, ε’’Mw (ω) can be expressed as:   

)(''
2

1)(''
2

)('' ωεωεωε ∞→





 −+= Mw

EG
EG

EG
Mw Mw

m
Mw
m

                    (2) 

where mEG is the mass of the units involved in the fluctuations of the end-group dipoles 

(mEG ≈ mGPE = 150 g/mol). Then, to evaluate both components, ε’’EG (ω) and ε’’Mw→∞ 

(ω), the β-relaxation data of two samples of different weight-average molecular weights 

(Mw) were used. The resulting individual contributions obtained for a LSR(A) sample 

with Mw = 2.2 kg/mol are shown in Figure 5a.  
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Figure 5. a) Frequency dependence of the ε’’ for the β-relaxation of LSR(A) of two 

molecular weights. (+) and (x) represent the resolved contributions originating from 

side groups and end groups, respectively, of the low molecular weight LSR(A) sample. 

b) Arrhenius plot of the peak frequencies of both contributions for LSR(A) and of the 

whole β-relaxation peak frequency for CSR(Z). 

 

The peak frequency of ε’’EG (ω) and ε’’Mw→∞ (ω) as a function of the inverse 

temperature are shown in an Arrhenius plot in Figure 5b. For both contributions we 

found Arrhenius temperature dependence, yielding activation energy (Ea) values of 35.4 

kJ/mol (prefactor = 2.5x1013 Hz) and 23.8 kJ/mol (prefactor = 1.6x1012 Hz) for the 

motions of side groups and end groups, respectively. Both relaxation components are 

quite broad, which indicates a broad distribution of relaxation times and, consequently, 

a broad distribution of activation energies. The full width at half maximum of the 

distribution of activation energies (FWHMEa) can be approximately calculated from that 

of the experimental curves (FWHMε’’)  as: 

10ln)14.1( '' −=
ε

FWHMTkFWHM BEa      (3) 

where the value of 1.14 decades comes from the width of the loss peak for a single 

relaxation time (see Supplementary Information). Using this approach, the FWHMEa 

values are 46% (of the average Ea) for the side-group motions and 66% for the end-

group motions in the LSR(A) series. 

Figure 6 shows the frequency dependence of the ε’’ for CSR(Z) and LSR(Z) of two 

molecular weights at 170 K. It is interesting to note that the peak position for CSR(Z) 
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samples is similar to that determined for the side-group contribution in the LSR(A) 

series, which is confirmed in the Arrhenius plot of Figure 5b by the good superposition 

of the peak frequency data with that of the ε’’Mw→∞ (ω). In addition, both cyclic samples 

show differences concerning the peak intensity and the relaxation broadening. The 

smaller ring shows reduction of intensity and broader relaxation compared to the larger 

ring. The FWHMEa values are 56% for the smaller ring and 53% for larger ring. These 

results suggest that reducing the ring size can cause additional topological constrains in 

the local motion responsible for the β-relaxation. 

 

Figure 6. Frequency dependence of the ε’’ for the β-relaxation of cyclic and linear 

PGPE samples of different molecular weights. Solid line shows the side-group 

contribution obtained for LSR(Z) of Mw=5.5 kg/mol. Arrows indicate decreasing 

molecular weight.  
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The side-group contribution to the β-relaxation in the LSR(Z) series was also evaluated 

by using the Equation 2 and the method described above. Interestingly, the resulting 

side-group contribution for LSR(Z) with Mw=5.5 kg/mol (solid line, Figure 6) overlaps 

the data of CSR(Z) with Mw=5.2 kg/mol, which suggests that the topology does not play 

a key role on the side-group local dynamics for sufficiently large rings.  

When analyzing the effects of regiostructure on the shape of the side-group contribution 

to the β-relaxation, we observed that samples with a higher level of regio-regularities 

exhibit narrower loss peaks, being FWHMEa 46% for LSR(A) and 52% for LSR(Z). This 

result confirms the higher homogeneity of the molecular environment for isoregic 

structures. 

 

Dielectric relaxations at T>Tg (chain modes) 

Figure 7 shows the dielectric relaxations for representative linear and cyclic samples at 

305 K. LSR(A) series clearly show the α-relaxation and NM peaks, whereas LSR(Z) and 

CSR(Z) series “apparently” show only the α-relaxation peak. The NM peak in isoregic 

chains is originating from the end-to-end vector ( eeR − ) fluctuations, being the resultant 

dipole moment eeNM R −∝µ  (Scheme 3a). Consequently, in this case, the NM relaxation 

reflects the whole chain dynamics. Based on topological considerations, for isoregic 

rings, it should be expected that 0=NMµ  (Scheme 3b). However, for aregic chains (case 

of LSR(Z) and CSR(Z)), analysis of the low frequency part of the dielectric losses is more 

complicated since short-wavelength chain motions would contribute to the dielectric 
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relaxation. Note that in this case the short-wavelength chain dipole moment ( ChMµ ) 

would not be proportional to eeR −  (Schemes 3c and 3d).  

 

Figure 7. Frequency dependence of the ε’’ for representative cyclic and linear PGPE 

samples at 305K. Solid lines are fitting curves (see the text below). 
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Scheme 3. Cartoon illustrating the resultant dipole moment vector ( µ ) for isoregic (a, 

b) and aregic (c, d) chains with linear and cyclic topologies.  

As observed in Figure 7, the NM peak for LSR(A) Mw = 4.8 kg/mol is well separated 

from that of the α-relaxation. To fit the data, the dielectric spectrum was analyzed by 

using a combination of a NM relaxation function, according to the Rouse model with 

non-exponential modes,39 and a Havriliak-Negami (HN)40 function describing the α-

relaxation (see details in the Supplementary Information). To limit the number of fitting 

parameters, we fixed the shape of the HN function to that corresponding to a 

Kohlrausch-Williams-Watts function in the time domain (HN-KWW).41 A dc 

conductivity contribution was also included in the fitting equation. To minimize the 

contributions of the β-relaxation in the fit, the data was limited up to frequencies 10 

times higher than that of the main peak. The obtained values of the fitting parameters 

are reported in Table 5. 

 
Table 5. Fitting parameters of dielectric relaxation data at 305 K shown in Figure 7. 

 LSR(A) LSR(Z) CSR(Z) 

Mw (kg/mol) 2.2 3.0 4.8 5.5 5.2 

ΔεNM 0.34 0.39 0.44 0.27 0.21 

τNM (s) 1.6 x 10-4 7.1 x 10-4 2.7 x 10-3 2.4 x 10-3  1.5 x 10-2 

αNM 0.86* 0.86* 0.86 0.60 0.73 

Δεα 1.90 1.84 1.70 1.86 1.83 

τα (s) 8.3 x 10-6 1.4 x 10-5 2.6 x 10-5 2.8 x 10-5* 4.4 x 10-4* 

α 0.74* 0.74* 0.74 0.70 0.70 
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ΔεNM: dielectric relaxation strength of the NM. τNM: peak relaxation time of the NM. 

αNM: shape parameter of the NM. Δεα: dielectric relaxation strength of the α-relaxation. 

τα: peak relaxation time of the α-relaxation. α: shape parameter of the α-relaxation. (*): 

parameters that were fixed in the fitting procedure. 

 

To fit the data of LSR(A) samples with Mw = 2.2 and 3.0 kg/mol, where the NM is not 

well separated from the alpha relaxation, the parameters determining the shape of the α-

relaxation (α=0.74 and γ=0.56) and the non-exponentiality of the individual Rouse 

modes (αNM=0.86) were fixed to those obtained for LSR(A) with Mw = 4.8 kg/mol, and 

only the relaxation times and the relaxation strengths (Δε) of the two processes were 

allow to vary. The obtained relaxation time values (Table 5) can be described by the 

following law:  

[ ]2NM )//(5 molkgM w=
ατ

τ
       (4) 

in good agreement with the Rouse model.  

Figure 8 shows the Mw dependence of the relaxation strengths ΔεNM and Δεα. The data 

show that ΔεNM slightly decreases with decreasing Mw for LSR(A) series. In principle, 

end-group dipoles are not expected to contribute to the NM, and therefore the observed 

behavior can be explained by the increasing concentration of end-groups with 

decreasing Mw. On the contrary, end groups do contribute to the α-relaxation, which 

would explain the observed increase of Δεα with decreasing Mw. 
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Figure 8. ΔεNM (solid symbols) and Δεα (open symbols) for linear and cyclic PGPE 

samples as a function of the molecular weight.  

In the aregic PGPE samples, either linear or cyclic, the presence of slow dielectric 

contributions from chain modes is not obvious. To confirm the presence of low 

frequency contributions to the dielectric relaxation peak, dielectric data at two 

temperatures are compared in Figure 9 for the highest molecular weight LSR(Z) and 

CSR(Z) samples of each series. This comparison is justified by the fact that the 

relaxation times of the chain modes and those of the α-relaxation exhibit different 

temperature dependence, becoming more separated with increasing temperature (see 

Figure 4b). The comparison in both samples show a noticeably broadening of the 

relaxation peaks at the low frequency side for the high-temperature dielectric-loss data, 

which can be explained by the contribution of short-wavelength chain modes (Schemes 

3c and 3d).  
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Figure 9. Comparison of the frequency dependence of the ε’’ at two temperatures 

exhibiting the presence of slow components associated with short-wavelength chain 

modes for aregic linear (a) and cyclic (b) PGPE samples. To superpose the peak 

maxima, low temperature data were shifted to high frequencies.  

 

To quantify these slow contributions to the dielectric relaxation in the aregic polymers, 

the dielectric loss data of Figure 7 cannot be fitted with the same procedure as that used 

for the LSR(A) series because the NM contribution does not correspond to the end-to-

end vector fluctuations. Instead, the NM contribution in aregic samples was modeled by 

a HN-KWW function similar to that used for the α-relaxation. To reduce the number of 

free fitting parameters, the peak α-relaxation times were fixed to those obtained from 

the global dielectric losses. The obtained Δεα values for LSR(Z) and CSR(Z) (Table 5, 

Figure 8) were found to be similar to those of the isoregic samples, as expected. 

However, due to regio-irregularities in LSR(Z) and CSR(Z), their ΔεNM values are nearly 

the half compared to that of LSR(A) with similar Mw (Figure 8). It is worthy to note that 
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the relaxation time of the slow components in aregic samples cannot be identified with 

the Rouse time for non-entangled linear chains, but it would be representative of shorter 

wavelength chain fluctuations.  

 

Dielectric relaxations at T>Tg (α-relaxation) 

The maxima of the whole relaxation peaks correspond well to the α-relaxation times 

(Figure 7). We have determined the temperature dependence of the relaxation times 

(τmax) by selecting the peak maxima for the different samples. The results, plotted in 

Figure 10, were fitted to a Vogel-Fulcher-Tammann (VFT) equation: 









−

=
0

0
0 exp(T)

TT
DTττ          (5) 

where τ0 is the typical vibrational time (fixed to τ0 = 1x10-14 s), D is the parameter 

related to the so-called dynamic fragility (low D corresponds to high dynamic fragility 

and vice-versa) and T0 is the so-called Vogel temperature, where the relaxation times 

would diverge.7 We found that D=6.1 for all linear samples, independently of the level 

of regicity and molecular weight, and D=6.4 for cyclic chains. These values are nearly 

the half of those found for polyethers containing aliphatic side groups.38  

The reduction of the dynamic fragility found for cyclic PGPE (higher D value) 

compared to linear PGPE would support the interpretation provided in a recent study on 

the effects of cyclic chain topology on the Tg depression in thin PS films,36 where the 

authors found much weaker thickness dependence of the Tg for cyclic PS compared to 
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linear PS. The significant reduction of the dynamic fragility for cyclic polymers would 

arise from the reduced configurational entropy of rings relative to linear chains.37 

 

Figure 10. Temperature dependence of the α-relaxation times for cyclic and linear 

PGPE samples. Solid lines are the fits obtained by means of the VFT equation 

(Equation 5). 

 

The obtained T0 and D values allow calculating the dynamic (dielectric) glass transition 

temperatures, Tg
BDS, as: 
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where the relaxation time defining the dynamic glass transition is fixed to a value of 

100s by convention.7 The obtained Tg
BDS values are compared with the calorimetric Tg 
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(Tg
DSC) values in Figure 3. Both data sets are in good agreement, although Tg

BDS is 

systematically smaller than Tg
DSC by 1-3 K, likely due to the relatively higher heating 

rates of the DSC experiments compared to those involved in BDS. 

 

CONCLUSIONS 

The combination of BDS and the variety of well-characterized PGPE samples with 

different topology and microstructure provides a detailed analysis of the effects of these 

structural characteristics on the molecular dynamics at different length scales (side 

groups, segmental motions and chain dynamics). The unique structural signatures of 

linear and cyclic PGPE was clearly revealed in the local β-relaxation due to the 

significant end-group contributions to this process. Side-group dynamic contributions 

are not much affected either by microstructure or topology although small changes in 

the width of the distribution of activation energies are detected.  

Cyclic chains show higher Tg than linear chains of same molecular weight and 

microstructure. The molecular weight dependence of the Tg for all linear PGPE samples 

can be described by the Kanig-Ueberreiter equation, irrespective of their level of 

regicity. These results are in agreement with the dynamic glass transition calculated 

from the temperature dependence of the α-relaxation times. Moreover, dielectric results 

evidence that the dynamic fragility of cyclic chains is lower compared to that of linear 

chains, and that it is independent of both the regicity and the molecular weight. 

Owing to regio-errors in cyclic chains, we could detect a low frequency component in 

the dielectric relaxation originating from short-wavelength internal ring motions. The 
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dielectric relaxation strength in aregic samples is nearly the half of that found for the 

normal mode relaxation in linear isoregic polymers. In addition, the relaxation time of 

the low frequency component in aregic samples is shorter than that for a linear isoregic 

sample of similar Mw. 

In conclusion, BDS is proved to be a powerful and sensitive tool not only to detect 

microstructural effects on the molecular dynamics, but also to investigate the molecular 

dynamics in cyclic polymers, which has not been sufficiently explored to date. In 

addition to the usual effects of cyclic topology on the glass transition temperature, we 

detect for first time effects of cyclic topology on the dynamic fragility.  
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