1,067 research outputs found

    Resistance of superconducting nanowires connected to normal metal leads

    Full text link
    We study experimentally the low temperature resistance of superconducting nanowires connected to normal metal reservoirs. We find that a substantial fraction of the nanowires is resistive, down to the lowest temperature measured, indicative of an intrinsic boundary resistance due to the Andreev-conversion of normal current to supercurrent. The results are successfully analyzed in terms of the kinetic equations for diffusive superconductors

    Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: homogeneous/inhomogeneous transition of current distribution

    Full text link
    Exotic features of a metal/oxide/metal (MOM) sandwich, which will be the basis for a drastically innovative nonvolatile memory device, is brought to light from a physical point of view. Here the insulator is one of the ubiquitous and classic binary-transition-metal oxides (TMO), such as Fe2O3, NiO, and CoO. The sandwich exhibits a resistance that reversibly switches between two states: one is a highly resistive off-state and the other is a conductive on-state. Several distinct features were universally observed in these binary TMO sandwiches: namely, nonpolar switching, non-volatile threshold switching, and current--voltage duality. From the systematic sample-size dependence of the resistance in on- and off-states, we conclude that the resistance switching is due to the homogeneous/inhomogeneous transition of the current distribution at the interface.Comment: 7 pages, 5 figures, REVTeX4, submitted to Phys. Rev. B (Feb. 23, 2007). If you can't download a PDF file of this manscript, an alternative one can be found on the author's website: http://staff.aist.go.jp/i.inoue

    Stochastic inversion of linear first kind integral equations I. Continuous theory and the stochastic generalized inverse

    Get PDF
    The dataset associated with this paper is in ORE; see http://hdl.handle.net/10871/17644© 2015 American Psychological AssociationThis article may not exactly replicate the final version published in the APA journal. It is not the copy of record.This paper is made available in accordance with publisher policies. The final published version of this article is available from the publisher’s site. at http://www.apa.org/pubs/journals/xhp/index.aspxBefore reusing this item please check the rights under which it has been made available. Some items are restricted to non-commercial use. Please cite the published version where applicable.The present study explores the link between attentional reorienting and response inhibition. Recent behavioral and neuroscience work indicates that both might rely on similar cognitive and neural mechanisms. We tested two popular accounts of the overlap: The ‘circuit breaker’ account, which assumes that unexpected events produce global suppression of motor output, and the ‘stimulus detection’ account, which assumes that attention is reoriented to unexpected events. In Experiment 1, we presented standard and (unexpected) novel sounds in a go/no-go task. Consistent with the stimulus detection account, we found longer RTs on go trials and higher rates of commission errors on no-go trials when these were preceded by a novel sound compared with a standard sound. In Experiment 2, novel and standard sounds acted as no-go signals. In this experiment, the novel sounds produced an improvement on no-go trials. This further highlights the importance of stimulus detection for response inhibition. Combined, the two experiments support the idea that attention is oriented to novel or unexpected events, impairing no-go performance if these events are irrelevant but enhancing no-go performance when they are relevant. Our findings also indicate that the popular circuit breaker account of the overlap between response inhibition and attentional reorienting needs some revision.European Research CouncilFPU Fellowshi

    Aharonov-Bohm interference in the presence of metallic mesoscopic cylinders

    Get PDF
    This work studies the interference of electrons in the presence of a line of magnetic flux surrounded by a normal-conducting mesoscopic cylinder at low temperature. It is found that, while there is a supplementary phase contribution from each electron of the mesoscopic cylinder, the sum of these individual supplementary phases is equal to zero, so that the presence of a normal-conducting mesoscopic ring at low temperature does not change the Aharonov-Bohm interference pattern of the incident electron. It is shown that it is not possible to ascertain by experimental observation that the shielding electrons have responded to the field of an incident electron, and at the same time to preserve the interference pattern of the incident electron. It is also shown that the measuring of the transient magnetic field in the region between the two paths of an electron interference experiment with an accuracy at least equal to the magnetic field of the incident electron generates a phase uncertainty which destroys the interference pattern.Comment: 15 pages, 5 Postscript figure

    Superconductor-insulator transition in nanowires and nanowire arrays

    Get PDF
    Superconducting nanowires are the dual elements to Josephson junctions, with quantum phase-slip processes replacing the tunneling of Cooper pairs. When the quantum phase-slip amplitude ES is much smaller than the inductive energy EL, the nanowire responds as a superconducting inductor. When the inductive energy is small, the response is capacitive. The crossover at low temperatures as a function of ES/EL is discussed and compared with earlier experimental results. For one-dimensional and two-dimensional arrays of nanowires quantum phase transitions are expected as a function of ES/EL. They can be tuned by a homogeneous magnetic frustration.Comment: 15 pages, 10 figure

    Does alcohol cue inhibitory control training survive a context shift?

    Get PDF
    Inhibitory control training (ICT) is a novel psychological intervention that aims to improve inhibitory control in response to alcohol-related cues through associative learning. Laboratory studies have demonstrated reductions in alcohol consumption following ICT compared with control/sham training, but it is unclear if these effects are robust to a change of context. In a preregistered study, we examined whether the effects of ICT would survive a context shift from a neutral context to a seminaturalistic bar setting. In a mixed design, 60 heavy drinkers (40 female) were randomly allocated to receive either ICT or control/sham training in a neutral laboratory over 2 sessions. We developed a novel variation of ICT that used multiple stop signals to establish direct stimulus–stop associations. The effects of ICT/control were measured once in the same context and once following a shift to a novel (alcohol-related) context. Our dependent variables were ad libitum alcohol consumption following training, change in inhibitory control processes, and change in alcohol value. ICT did not reduce alcohol consumption in either context compared with the control group. Furthermore, we demonstrated no effects of ICT on inhibitory control processes or alcohol value. Bayesian analyses demonstrated overall support for the null hypotheses. This study failed to find any effects of ICT on alcohol consumption or candidate psychological mechanisms. These findings illustrate the difficulty in training alcohol-inhibition associations and add to a growing body of literature suggesting that ICT holds little evidential value as a psychological intervention for alcohol use disorders

    Universal Behavior of the Resistance Noise across the Metal-Insulator Transition in Silicon Inversion Layers

    Full text link
    Studies of low-frequency resistance noise show that the glassy freezing of the two-dimensional (2D) electron system in the vicinity of the metal-insulator transition occurs in all Si inversion layers. The size of the metallic glass phase, which separates the 2D metal and the (glassy) insulator, depends strongly on disorder, becoming extremely small in high-mobility samples. The behavior of the second spectrum, an important fourth-order noise statistic, indicates the presence of long-range correlations between fluctuators in the glassy phase, consistent with the hierarchical picture of glassy dynamics.Comment: revtex4; 4+ pages, 5 figure

    Improving transferability of introduced species' distribution models: new tools to forecast the spread of a highly invasive seaweed

    Get PDF
    Extent: 13 p.The utility of species distribution models for applications in invasion and global change biology is critically dependent on their transferability between regions or points in time, respectively. We introduce two methods that aim to improve the transferability of presence-only models: density-based occurrence thinning and performance-based predictor selection. We evaluate the effect of these methods along with the impact of the choice of model complexity and geographic background on the transferability of a species distribution model between geographic regions. Our multifactorial experiment focuses on the notorious invasive seaweed Caulerpa cylindracea (previously Caulerpa racemosa var. cylindracea) and uses Maxent, a commonly used presence-only modeling technique. We show that model transferability is markedly improved by appropriate predictor selection, with occurrence thinning, model complexity and background choice having relatively minor effects. The data shows that, if available, occurrence records from the native and invaded regions should be combined as this leads to models with high predictive power while reducing the sensitivity to choices made in the modeling process. The inferred distribution model of Caulerpa cylindracea shows the potential for this species to further spread along the coasts of Western Europe, western Africa and the south coast of Australia.Heroen Verbruggen, Lennert Tyberghein, Gareth S. Belton, Frederic Mineur, Alexander Jueterbock, Galice Hoarau, C. Frederico D. Gurgel, Olivier De Clerc

    Ratchet Effect in Surface Electromigration: Smoothing Surfaces by an ac Field

    Full text link
    We demonstrate that for surfaces that have a nonzero Schwoebel barrier the application of an ac field parallel to the surface induces a net electro- migration current that points in the descending step direction. The magnitude of the current is calculated analytically and compared with Monte Carlo simulations. Since a downhill current smoothes the surface, our results imply that the application of ac fields can aid the smoothing process during annealing and can slow or eliminate the Schwoebel-barrier-induced mound formation during growth.Comment: 4 pages, LaTeX, 4 ps figure
    • 

    corecore