55 research outputs found
Compaction of microporous amorphous solid water by ion irradiation
We have studied the compaction of vapor-deposited amorphous solid water by energetic ions at 40 K. The porosity was characterized by ultraviolet-visible spectroscopy, infrared spectroscopy, and methane adsorption/desorption. These three techniques provide different and complementary views of the structural changes in ice resulting from irradiation. We find that the decrease in internal surface area of the pores, signaled by infrared absorption by dangling bonds, precedes the decrease in the pore volume during irradiation. Our results imply that impacts from cosmic rays can cause compaction in the icy mantles of the interstellar grains, which can explain the absence of dangling bond features in the infrared spectrum of molecular clouds.Fil: Raut, U.. University of Virginia; Estados UnidosFil: Teolis, B. D.. University of Virginia; Estados UnidosFil: Loeffler, M. J.. University of Virginia; Estados UnidosFil: Vidal, Ricardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Famá, M.. University of Virginia; Estados UnidosFil: Baragiola, R. A.. University of Virginia; Estados Unido
Limits on the Contribution of Endogenic Radiolysis to the Presence of Molecular Oxygen in Comet 67P/Churyumov-Gerasimenko
Radiolytic production has been proposed as a potential source for the molecular oxygen observed in comet 67P/Churyumov-Gerasimenko. Radiolysis can be exogenic or endogenic, the latter due to radionuclides present in the dust constitutive of the comet nucleus. We investigated the possibility of forming a significant amount of molecular oxygen through endogenic radiolysis. We applied a model of radiolytic production, developed for an Earth rock-water mixture, and improved it to account for the effect of the size of a radionuclide-bearing grain on the net radiation deposited in its ice mantle. We calculated the possible production of molecular oxygen considering the available experimental values of radiolytic yields. We found that endogenic radiolysis cannot account for the totality of the 3.8% (relative to water) O2abundance derived from the ROSINA observations, with an end member case of our model producing at most a 1% abundance. By contrast, we predict H2O2production leads to an abundance up to two orders of magnitude above observed values
On the origin and evolution of the material in 67P/Churyumov-Gerasimenko
International audiencePrimitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects
Vacuum ultraviolet photoabsorption spectroscopy of space-related ices: 1 keV electron irradiation of nitrogen- and oxygen-rich ices
Context. Molecular oxygen, nitrogen, and ozone have been detected on some satellites of Saturn and Jupiter, as well as on comets. They are also expected to be present in ice-grain mantles within star-forming regions. The continuous energetic processing of icy objects in the Solar System induces physical and chemical changes within the ice. Laboratory experiments that simulate energetic processing (ions, photons, and electrons) of ices are therefore essential for interpreting and directing future astronomical observations.
Aims. We provide vacuum ultraviolet (VUV) photoabsorption spectroscopic data of energetically processed nitrogen- and oxygen-rich ices that will help to identify absorption bands and/or spectral slopes observed on icy objects in the Solar System and on ice-grain mantles of the interstellar medium.
Methods. We present VUV photoabsorption spectra of frozen O2 and N2, a 1:1 mixture of both, and a new systematic set of pure and mixed nitrogen oxide ices. Spectra were obtained at 22 K before and after 1 keV electron bombardment of the ice sample. Ices were then annealed to higher temperatures to study their thermal evolution. In addition, Fourier-transform infrared spectroscopy was used as a secondary probe of molecular synthesis to better identify the physical and chemical processes at play.
Results. Our VUV data show that ozone and the azide radical (N3) are observed in our experiments after electron irradiation of pure O2 and N2 ices, respectively. Energetic processing of an O2:N2 = 1:1 ice mixture leads to the formation of ozone along with a series of nitrogen oxides. The electron irradiation of solid nitrogen oxides, pure and in mixtures, induces the formation of new species such as O2, N2, and other nitrogen oxides not present in the initial ice. Results are discussed here in light of their relevance to various astrophysical environments. Finally, we show that VUV spectra of solid NO2 and water can reproduce the observational VUV profile of the cold surface of Enceladus, Dione, and Rhea, strongly suggesting the presence of nitrogen oxides on the surface of the icy Saturn moons
- …