214 research outputs found
Mutations in multidomain protein MEGF8 identify a Carpenter syndrome subtype associated with defective lateralization
Carpenter syndrome is an autosomal-recessive multiple-congenital-malformation disorder characterized by multisuture craniosynostosis and polysyndactyly of the hands and feet; many other clinical features occur, and the most frequent include obesity, umbilical hernia, cryptorchidism, and congenital heart disease. Mutations of RAB23, encoding a small GTPase that regulates vesicular transport, are present in the majority of cases. Here, we describe a disorder caused by mutations in multiple epidermal-growth-factor-like-domains 8 (MEGF8), which exhibits substantial clinical overlap with Carpenter syndrome but is frequently associated with abnormal left-right patterning. We describe five affected individuals with similar dysmorphic facies, and three of them had either complete situs inversus, dextrocardia, or transposition of the great arteries; similar cardiac abnormalities were previously identified in a mouse mutant for the orthologous Megf8. The mutant alleles comprise one nonsense, three missense, and two splice-site mutations; we demonstrate in zebrafish that, in contrast to the wild-type protein, the proteins containing all three missense alterations provide only weak rescue of an early gastrulation phenotype induced by Megf8 knockdown. We conclude that mutations in MEGF8 cause a Carpenter syndrome subtype frequently associated with defective left-right patterning, probably through perturbation of signaling by hedgehog and nodal family members. We did not observe any subject with biallelic loss-of function mutations, suggesting that some residual MEGF8 function might be necessary for survival and might influence the phenotypes observed
Incidence and characteristics of adverse events in paediatric inpatient care: a systematic review and meta-analysis
Background: Adverse events (AEs) cause suffering for hospitalised children, a fragile patient group where the delivery of adequate timely care is of great importance. Objective: To report the incidence and characteristics of AEs, in paediatric inpatient care, as detected with the Global Trigger Tool (GTT), the Trigger Tool (TT) or the Harvard Medical Practice Study (HMPS) method. Method: MEDLINE, Embase, Web of Science and Google Scholar were searched from inception to June 2021, without language restrictions. Studies using manual record review were included if paediatric data were reported separately. We excluded studies reporting: AEs for a specific disease/diagnosis/treatment/procedure, or deceased patients; study protocols with no AE outcomes; conference abstracts, editorials and systematic reviews; clinical incident reports as the primary data source; and studies focusing on specific AEs only. Methodological risk of bias was assessed using a tool based on the Quality Assessment Tool for Diagnostic Accuracy Studies 2. Primary outcome was the percentage of admissions with ≥1 AEs. All statistical analyses were stratified by record review methodology (GTT/TT or HMPS) and by type of population. Meta-analyses, applying random-effects models, were carried out. The variability of the pooled estimates was characterised by 95% prediction intervals (PIs). Results: We included 32 studies from 44 publications, conducted in 15 countries totalling 33 873 paediatric admissions. The total number of AEs identified was 8577. The most common types of AEs were nosocomial infections (range, 6.8%-59.6%) for the general care population and pulmonary-related (10.5%-36.7%) for intensive care. The reported incidence rates were highly heterogeneous. The PIs for the primary outcome were 3.8%-53.8% and 6.9%-91.6% for GTT/TT studies (general and intensive care population). The equivalent PI was 0.3%-33.7% for HMPS studies (general care). The PIs for preventable AEs were 7.4%-96.2% and 4.5%-98.9% for GTT/TT studies (general and intensive care population) and 10.4%-91.8% for HMPS studies (general care). The quality assessment indicated several methodological concerns regarding the included studies. Conclusion: The reported incidence of AEs is highly variable in paediatric inpatient care research, and it is not possible to estimate a reliable single rate. Poor reporting standards and methodological differences hinder the comparison of study results
Mistletoe lectin is not the only cytotoxic component in fermented preparations of Viscum album from white fir (Abies pectinata)
<p>Abstract</p> <p>Background</p> <p>Preparations of mistletoe (<it>Viscum album</it>) are the form of cancer treatment that is most frequently used in the complementary medicine. Previous work has shown that these preparations are able to exert cytotoxic effects on carcinoma cells, the extent of which might be influenced by the host tree species and by the content of mistletoe lectin.</p> <p>Methods</p> <p>Using colorimetric assays, we have now compared the cytotoxic effects of <it>Viscum album </it>preparations (VAPs) obtained from mistletoe growing on oak (<it>Quercus robur </it>and <it>Q. petraea</it>, VAP-Qu), apple tree (<it>Malus domestica</it>,, VAP-M), pine (<it>Pinus sylvestris</it>, VAP-P) or white fir (<it>Abies pectinata</it>, VAP-A), on the <it>in vitro </it>growth of breast and bladder carcinoma cell lines. While MFM-223, KPL-1, MCF-7 and HCC-1937 were the breast carcinoma cell lines chosen, the panel of tested bladder carcinoma cells comprised the T-24, TCC-SUP, UM-UC-3 and J-82 cell lines.</p> <p>Results</p> <p>Each of the VAPs inhibited cell growth, but the extent of this inhibition differed with the preparation and with the cell line. The concentrations of VAP-Qu, VAP-M and VAP-A which led to a 50 % reduction of cell growth (IC<sub>50</sub>) varied between 0.6 and 0.03 mg/ml. Higher concentrations of VAP-P were required to obtain a comparable effect. Purified mistletoe lectin I (MLI) led to an inhibition of breast carcinoma cell growth at concentrations lower than those of VAPs, but the sensitivity towards purified MLI did not parallel that towards VAPs. Bladder carcinoma cells were in most cases more sensitive to VAPs treatment than breast carcinoma cells. The total mistletoe lectin content was very high in VAP-Qu (54 ng/mg extract), intermediate in VAP-M (25 ng/mg extract), and very low in VAP-P (1.3 ng/mg extract) and in VAP-A (1 ng/mg extract). As to be expected from the low content of mistletoe lectin, VAP-P led to relatively weak cytotoxic effects. Most remarkably, however, the lectin-poor VAP-A revealed a cytotoxic effect comparable to, or even stronger than, that of the lectin-rich VAP-Qu, on all tested bladder and breast carcinoma cell lines.</p> <p>Conclusion</p> <p>The results suggest the existence of cytotoxic components other than mistletoe lectin in VAP-A and reveal an unexpected potential of this preparation for the treatment of breast and bladder cancer.</p
Operando XANES study of simulated transient cycles on a Pd-only three-way catalyst
A model Pd-only three-way catalyst has been subjected to simulated driving conditions of natural gas and gasoline operation in an operando reactor cell for X-ray absorption spectroscopy that included alternated, but longer than real oscillations, rich and lean periods and a high temperature surge (850\u2013900 \ub0C). The X-ray absorption near edge structure (XANES) spectra indicated that metallic palladium is observed in the whole temperature range investigated (up to 900 \ub0C) and irrespective of the air/fuel ratio. In both natural gas and gasoline cycles, the XANES data show that the PdO reduced in the rich periods cannot be restored in the lean periods. With this background, activity for methane abatement in the high temperature regime is greatly affected by the oxidation state of palladium rather than by the change of air/fuel ratio. In the case of propene oxidation, while Pd also remains predominantly in the reduced state, activity is dictated by the oxygen concentration in the feedstock. Comparison between the two hydrocarbons demonstrates that the oxidation state of Pd may be responsible for observed methane emissions under realistic operating circumstances. Moreover, the experiments demonstrate that reduced Pd may be continuously present during operation in agreement with observations on real catalytic converters. Although this may be the average oxidation state of Pd, more advanced probes are certainly necessary to capture variations of oxidation state under the fast oscillatory conditions needed to imitate real operation
Deficiency in origin licensing proteins impairs cilia formation: implications for the aetiology of meier-gorlin syndrome
Mutations in ORC1, ORC4, ORC6, CDT1, and CDC6, which encode proteins required for DNA replication origin licensing, cause Meier-Gorlin syndrome (MGS), a disorder conferring microcephaly, primordial dwarfism, underdeveloped ears, and skeletal abnormalities. Mutations in ATR, which also functions during replication, can cause Seckel syndrome, a clinically related disorder. These findings suggest that impaired DNA replication could underlie the developmental defects characteristic of these disorders. Here, we show that although origin licensing capacity is impaired in all patient cells with mutations in origin licensing component proteins, this does not correlate with the rate of progression through S phase. Thus, the replicative capacity in MGS patient cells does not correlate with clinical manifestation. However, ORC1-deficient cells from MGS patients and siRNA-mediated depletion of origin licensing proteins also have impaired centrosome and centriole copy number. As a novel and unexpected finding, we show that they also display a striking defect in the rate of formation of primary cilia. We demonstrate that this impacts sonic hedgehog signalling in ORC1-deficient primary fibroblasts. Additionally, reduced growth factor-dependent signaling via primary cilia affects the kinetics of cell cycle progression following cell cycle exit and re-entry, highlighting an unexpected mechanism whereby origin licensing components can influence cell cycle progression. Finally, using a cell-based model, we show that defects in cilia function impair chondroinduction. Our findings raise the possibility that a reduced efficiency in forming cilia could contribute to the clinical features of MGS, particularly the bone development abnormalities, and could provide a new dimension for considering developmental impacts of licensing deficiency
Primary Cilia Are Not Required for Normal Canonical Wnt Signaling in the Mouse Embryo
Sonic hedgehog (Shh) signaling in the mouse requires the microtubule-based organelle, the primary cilium. The primary cilium is assembled and maintained through the process of intraflagellar transport (IFT) and the response to Shh is blocked in mouse mutants that lack proteins required for IFT. Although the phenotypes of mouse IFT mutants do not overlap with phenotypes of known Wnt pathway mutants, recent studies report data suggesting that the primary cilium modulates responses to Wnt signals.We therefore carried out a systematic analysis of canonical Wnt signaling in mutant embryos and cells that lack primary cilia because of loss of the anterograde IFT kinesin-II motor (Kif3a) or IFT complex B proteins (Ift172 or Ift88). We also analyzed mutant embryos with abnormal primary cilia due to defects in retrograde IFT (Dync2h1). The mouse IFT mutants express the canonical Wnt target Axin2 and activate a transgenic canonical Wnt reporter, BAT-gal, in the normal spatial pattern and to the same quantitative level as wild type littermates. Similarly, mouse embryonic fibroblasts (MEFs) derived from IFT mutants respond normally to added Wnt3a. The switch from canonical to non-canonical Wnt also appears normal in IFT mutant MEFs, as both wild-type and mutant cells do not activate the canonical Wnt reporter in the presence of both Wnt3a and Wnt5a.We conclude that loss of primary cilia or defects in retrograde IFT do not affect the response of the midgestation embryo or embryo-derived fibroblasts to Wnt ligands
Periconceptional Maternal Folic Acid Use of 400 µg per Day Is Related to Increased Methylation of the IGF2 Gene in the Very Young Child
Background: Countries worldwide recommend women planning pregnancy to use daily 400 mg of synthetic folic acid in the periconceptional period to prevent birth defects in children. The underlying mechanisms of this preventive effect are not clear, however, epigenetic modulation of growth processes by folic acid is hypothesized. Here, we investigated whether periconceptional maternal folic acid use and markers of global DNA methylation potential (S-adenosylmethionine and S-adenosylhomocysteine blood levels) in mothers and children affect methylation of the insulin-like growth factor 2 gene differentially methylation region (IGF2 DMR) in the child. Moreover, we tested whether the methylation of the IGF2 DMR was independently associated with birth weight. Methodology/Principal Findings: IGF2 DMR methylation in 120 children aged 17 months (SD 0.3) of whom 86 mothers had used and 34 had not used folic acid periconceptionally were studied. Methylation was measured of 5 CpG dinucleotides covering the DMR using a mass spectrometry-based method. Children of mother who used folic acid had a 4.5% higher methylation of the IGF2 DMR than children who were not exposed to folic acid (49.5% vs. 47.4%; p = 0.014). IGF2 DMR methylation of the children also was associated with the S-adenosylmethionine blood level of the mother but not of the child (+1.7% methylation per SD S-adenosylmethionine; p = 0.037). Finally, we observed an inverse independent association between IGF2 DMR methylation and birth weight (-1.7% methylation per SD birthweight; p = 0.034). Conclusions: Periconceptional folic acid use is associated with epigenetic changes in IGF2 in the child that may affect intrauterine programming of growth and development with consequences for health and disease throughout life. These results indicate plasticity of IGF2 methylation by periconceptional folic acid use
Rac1-Dependent Collective Cell Migration Is Required for Specification of the Anterior-Posterior Body Axis of the Mouse
Live imaging and analysis of conditional mutants show that the embryonic organizer that determines the anterior-posterior axis in the mouse embryo moves by Rac1-dependent collective cell migration
IGF2 stimulates fetal growth in a sex- and organ-dependent manner
BackgroundInsulin-like growth factor 2 (IGF2) is a key determinant of fetal growth, and the altered expression of IGF2 is implicated in fetal growth disorders and maternal metabolic derangements including gestational diabetes. Here we studied how increased levels of IGF2 in late pregnancy affect fetal growth.MethodsWe employed a rat model of repeated intrafetal IGF2 administration in late pregnancy, i.e., during GD19-GD21, and measured the consequences on fetal organ weight and expression of insulin/IGF-axis components.ResultsIGF2 treatment tended to increase fetal weight, but only weight increase of the fetal stomach reached significance (+33±9%; P<0.01). Sex-dependent data analysis revealed a sexual dimorphism of IGF2 action. In male fetuses, IGF2 administration significantly increased fetal weight (+13±3%; P<0.05) and weight of fetal stomach (+42±10%; P<0.01), intestine (+26±5%; P<0.05), liver (+13±4%; P<0.05), and pancreas (+25±8%; P<0.05). Weights of heart, lungs, and kidneys were unchanged. In female fetuses, IGF2 increased only stomach weight (+26±9%; P<0.05). Furthermore, gene expression of insulin/IGF axis in the heart, lungs, liver, and stomach was more sensitive toward IGF2 treatment in male than in female fetuses.ConclusionData suggest that elevated circulating IGF2 in late pregnancy predominantly stimulates organ growth of the digestive system, and male fetuses are more susceptible toward the IGF2 effects than female fetuses.Fil: White, VerĂłnica. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Centro de Estudios FarmacolĂłgicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios FarmacolĂłgicos y Botánicos; ArgentinaFil: Jawerbaum, Alicia Sandra. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Centro de Estudios FarmacolĂłgicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios FarmacolĂłgicos y Botánicos; ArgentinaFil: Mazzucco, MarĂa BelĂ©n. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Centro de Estudios FarmacolĂłgicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios FarmacolĂłgicos y Botánicos; ArgentinaFil: Gauster, Martin. Medizinische Universität Graz; AustriaFil: Desoye, Gernot. Medizinische Universität Graz; AustriaFil: Hiden, Ursula. Medizinische Universität Graz; Austri
Topography of calcium phosphate ceramics regulates primary cilia length and TGF receptor recruitment associated with osteogenesis
The surface topography of synthetic biomaterials is known to play a role in material-driven osteogenesis. Recent studies show that TGFβ signalling also initiates osteogenic differentiation. TGFβ signalling requires the recruitment of TGFβ receptors (TGFβR) to the primary cilia. In this study, we hypothesize that the surface topography of calcium phosphate ceramics regulates stem cell morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation. We developed a 2D system using two types of tricalcium phosphate (TCP) ceramic discs with identical chemistry. One sample had a surface topography at micron-scale (TCP-B, with a bigger surface structure dimension) whilst the other had a surface topography at submicron scale (TCP-S, with a smaller surface structure dimension). In the absence of osteogenic differentiation factors, human bone marrow stromal cells (hBMSCs) were more spread on TCP-S than on TCP-B with alterations in actin organization and increased primary cilia prevalence and length. The cilia elongation on TCP-S was similar to that observed on glass in the presence of osteogenic media and was followed by recruitment of transforming growth factor-β RII (p-TGFβ RII) to the cilia axoneme. This was associated with enhanced osteogenic differentiation of hBMSCs on TCP-S, as shown by alkaline phosphatase activity and gene expression for key osteogenic markers in the absence of additional osteogenic growth factors. Similarly, in vivo after a 12-week intramuscular implantation in dogs, TCP-S induced bone formation while TCP-B did not. It is most likely that the surface topography of calcium phosphate ceramics regulates primary cilia length and ciliary recruitment of p-TGFβ RII associated with osteogenesis and bone formation. This bioengineering control of osteogenesis via primary cilia modulation may represent a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery applications. Statement of Significance The surface topography of synthetic biomaterials plays important roles in material-driven osteogenesis. The data presented herein have shown that the surface topography of calcium phosphate ceramics regulates mesenchymal stromal cells (e.g., human bone marrow mesenchymal stromal cells, hBMSCs) with respect to morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation in vitro. Together with bone formation in vivo, our results suggested a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery by the bioengineering control of osteogenesis via primary cilia modulation
- …