242 research outputs found

    Possible trace fossils of putative termite origin in the Lower Jurassic (Karoo Supergroup) of South Africa and Lesotho

    Get PDF
    Complex structures in the sandstones of the Lower Jurassic aeolian Clarens Formation (Karoo Supergroup) are found at numerous localities throughout southern Africa, and can be assigned to five distinct architectural groups: (1) up to 3.3-m high, free-standing, slab-shaped forms of bioturbated sandstones with elliptical bases, orientated buttresses and an interconnecting large burrow system; (2) up to 1.2-m high, free-standing, irregular forms of bioturbated sandstones with 2-cm to 4-cm thick, massive walls, empty chambers and vertical shafts; (3) about 0.15-m to 0.25-m high, mainly bulbous, multiple forms with thin walls (<2 cm), hollow chambers with internal pillars and bridges; (4) about 0.15-m to 0.2-m (maximum 1-m) high, free-standing forms of aggregated solitary spheres associated with massive horizontal, orientated capsules or tubes, and meniscate tubes; and (5) about 5 cmin diameter, ovoid forms with weak internal shelving in a close-fitting cavity. Based on size, wall thickness, orientation and the presence of internal chambers, these complex structures are tentatively interpreted as ichnofossils of an Early Jurassic social organism; the different architectures are reflective of the different behaviours of more than one species, the history of structural change in architectural forms (ontogenetic series) or an architectural adaptation to local palaeoclimatic variability. While exact modern equivalents are unknown, some of these ichnofossils are comparable to nests (or parts of nests) constructed by extant termites, and thus these Jurassic structures are very tentatively interpreted here as having been made by a soil-dwelling social organism, probably of termite origin. This southern African discovery, along with reported Triassic and Jurassic termite ichnofossils from North America, supports previous hypotheses that sociality in insects, particularity in termites, likely evolved prior to the Pangea breakup in the Early Mesozoic

    Sequence stratigraphic framework and application to the Precambrian

    Get PDF
    Sequence stratigraphy highlights stratal stacking patterns and changes thereof within a time frame. Each stratal stacking pattern defines a particular genetic type of deposit with a unique geometry and sediment dispersal pattern within the basin. Common genetic types of deposit are referred to as ‘forced regressive’, ‘lowstand normal regressive’, ‘transgressive’, and ‘highstand normal regressive’. These genetic units are the basic building blocks of the sequence stratigraphic framework at any scale of observation, and are bounded by sequence stratigraphic surfaces. The recurrence of the same types of sequence stratigraphic surface through geologic time defines cycles of change in accommodation or sediment supply, which correspond to sequences in the rock record. Depending on the scale of observation, sequences and sequence stratigraphic surfaces may be ascribed to different hierarchical orders. The concept of accommodation, which defines the space available for sediments to fill, is central to sequence stratigraphy. Changes in accommodation are in part controlled by regional to local tectonism, and therefore are location specific. The construction of accommodation curves is based on Wheeler diagrams, the preserved thickness of sequences, and the paleodepositional environment. Accommodation curves may or may not correlate between different sedimentary basins, or even between different sub-basins of the same sedimentary basin, depending on the interplay of local versus global controls on sedimentation. The offset between the accommodation curves that characterize different depozones tends to increase for cycles of increasingly lower rank. While the workflow and principles of sequence stratigraphy remain the same irrespective of the age of strata under analysis, the differences and similarities between the Phanerozoic and the Precambrian rock record provide significant clues to improving our approach to the application of the sequence stratigraphic method.The Natural Sciences and Engineering Research Council of Canada (NSERC), the University of Alberta (OC), the CNPq - Brazilian National Research Council (MAMN), and the University of Pretoria (PGE).http://www.elsevier.com/locate/marpetgeohb201

    Distribution of sedimentary rock types through time in a back-arc basin: A case study from the Jurassic of the Greater Caucasus (Northern Neotethys)

    Get PDF
    Abstract The evolution of sedimentary basins can be explored by analyzing the changes in their lithologies and lithofacies (i.e. predominant lithologies). The Greater Caucasus Basin, which was located at the northern margin of the Neotethys Ocean, represents a complete Sinemurian-Tithonian succession. A quantitative analysis of compiled datasets suggests that principal lithologies and lithofacies are represented by siliciclastics, shale and carbonates. The relative abundance of siliciclastics and shale decreased throughout the Jurassic, whereas that of carbonates increased. Evaporites are known from the Upper Jurassic, while volcaniclastics and volcanics, as well as coals, are known only in the Lower to Middle Jurassic. Siliceous rocks are extremely rare. Lithology and lithofacies proportions change accordingly. The Sinemurian-Bathonian sedimentary complex is siliciclastic-and-shale-dominated, whereas the Callovian-Tithonian sedimentary complex is carbonate-dominated. A major change in the character of sedimentation occurred during the Aalenian-Callovian time interval. Regional transgressions and regressions were more important controls of changes in the sedimentary rock proportions than average basin depth. Landward shoreline shifts were especially favorable for carbonate accumulation, whereas siliciclastics and shale were deposited preferentially in regressive settings. An extended area of the marine basin, its lower average depth, and a sharp bathymetric gradient favored a higher diversity of sedimentation. An orogeny at the Triassic-Jurassic transition was responsible for a large proportion of siliciclastics and extensive conglomerate deposition. An arcarc collision in the Middle Jurassic also enhanced the siliciclastic deposition. Both phases of tectonic activity were linked with an increase in volcanics and volcaniclastics. Volcanism itself might have been an important control on sedimentation. A transition to carbonate-dominated sedimentation occurred in the Late Jurassic, reflecting a tectonically calm period

    Kimmeridgian-Tithonian sea-level fluctuations in the Uljanovsk-Saratov Basin (Russian Platform)

    Get PDF
    Abstract The Uljanovsk-Saratov Basin, located in the southeast of the Russian Platform, presents an intriguing record of the Kimmeridgian-Tithonian sea-level fluctuations. In the Late Jurassic, this basin was a trough within the Interior Russian Sea. The data available from both outcrops and boreholes have permitted outlining a number of lithostratigraphic units and regional hiatuses in the northeastern segment of the Uljanovsk-Saratov Basin, thus permitting a precise reconstruction of transgressions/regressions and deepenings/shallowings. In total, three transgressive-regressive cycles and two deepening pulses have been established. These regionally documented changes were both related in part to global eustatic changes, and they also corresponded in part to the regional sea-level changes in some basins of Western Europe and Northern Africa, but not to those of the Arabian Platform. Differences observed between the global and regional curves as well as rapid Tithonian sea-level oscillations are explained by the influences of tectonic activity. It is hypothesized that the regional Tithonian oxygen depletion might have been a consequence from the rapid flooding of a densely vegetated land

    Surface-wave imaging of the weakly-extended Malawi Rift from ambient-noise and teleseismic Rayleigh waves from onshore and lake-bottom seismometers

    Get PDF
    Located at the southernmost sector of the Western Branch of the East African Rift System, the Malawi Rift exemplifies an active, magma-poor, weakly extended continental rift. To investigate the controls on rifting, we image crustal and uppermost mantle structure beneath the region using ambient-noise and teleseismic Rayleigh-wave phase velocities between 9 and 100 s period. Our study includes six lake-bottom seismometers located in Lake Malawi (Nyasa), the first time seismometers have been deployed in any of the African rift lakes. Noise-levels in the lake are lower than that of shallow oceanic environments and allow successful application of compliance corrections and instrument orientation determination. Resulting phase-velocity maps reveal slow velocities primarily confined to Lake Malawi at short periods (T 25 s) a prominent low-velocity anomaly exists beneath the Rungwe Volcanic Province at the northern terminus of the rift basin. Estimates of phase-velocity sensitivity indicates these low velocities occur within the lithospheric mantle and potentially uppermost asthenosphere, suggesting that mantle processes may control the association of volcanic centers and the localization of magmatism. Beneath the main portion of the Malawi Rift, a modest reduction in velocity is also observed at periods sensitive to the crust and upper mantle, but these velocities are much higher than those observed beneath Rungwe

    Microstructural evolution and trace element mobility in Witwatersrand pyrite

    Get PDF
    Microstructural analysis of pyrite from a single sample of Witwatersrand conglomerate indicates a complex deformation history involving components of both plastic and brittle deformation. Internal deformation associated with dislocation creep is heterogeneously developed within grains, shows no systematic relationship to bulk rock strain or the location of grain boundaries and is interpreted to represent an episode of pyrite deformation that predates the incorporation of detrital pyrite grains into the Central Rand conglomerates. In contrast, brittle deformation, manifest by grain fragmentation that transects dislocation-related microstructures, is spatially related to grain contacts and is interpreted to represent post-depositional deformation of the Central Rand conglomerates. Analysis of the low-angle boundaries associated with the early dislocation creep phase of deformation indicates the operation of {100} slip systems. However, some orientation boundaries have geometrical characteristics that are not consistent with simple {100} deformation.These boundaries may represent the combination of multiple slip systems or the operation of the previously unrecognized {120} slip system. These boundaries are associated with order of magnitude enrichments in As, Ni and Co that indicate a deformation control on the remobilization of trace elements within pyrite and a potential slip system control on the effectiveness of fast-diffusion pathways. The results confirm the importance of grain-scale elemental remobilization within pyrite prior to their incorporation into the Witwatersrand gold-bearing conglomerates. Since the relationship between gold and pyrite is intimately related to the trace element geochemistry of pyrite, the results have implications for the application of minor element geochemistry to ore deposit formation, suggest a reason for heterogeneous conductivity and localized gold precipitation in natural pyrite and provide a framework for improving mineral processing

    A New Pterosaur (Pterodactyloidea: Azhdarchidae) from the Upper Cretaceous of Morocco

    Get PDF
    The Kem Kem beds in South Eastern Morocco contain a rich early Upper (or possibly late Lower) Cretaceous vertebrate assemblage. Fragmentary remains, predominantly teeth and jaw tips, represent several kinds of pterosaur although only one species, the ornithocheirid Coloborhynchus moroccensis, has been named. Here, we describe a new azhdarchid pterosaur, Alanqa saharica nov. gen. nov. sp., based on an almost complete well preserved mandibular symphysis from Aferdou N'Chaft. We assign additional fragmentary jaw remains, some of which have been tentatively identified as azhdarchid and pteranodontid, to this new taxon which is distinguished from other azhdarchids by a remarkably straight, elongate, lance-shaped mandibular symphysis that bears a pronounced dorsal eminence near the posterior end of its dorsal (occlusal) surface. Most remains, including the holotype, represent individuals of approximately three to four meters in wingspan, but a fragment of a large cervical vertebra, that probably also belongs to A. saharica, suggests that wingspans of six meters were achieved in this species. The Kem Kem beds have yielded the most diverse pterosaur assemblage yet reported from Africa and provide the first clear evidence for the presence of azhdarchids in Gondwana at the start of the Late Cretaceous. This, the relatively large size achieved by Alanqa, and the additional evidence of variable jaw morphology in azhdarchids provided by this taxon, indicates a longer and more complex history for this clade than previously suspected
    • …
    corecore