140 research outputs found

    The analysis of biological diversity of coronaviruses contributes in the early awareness of their zoonotic spreading

    Get PDF
    The recent outbreak of COVID-19 rose a new wave of interest to coronaviruses though the first coronaviruses were discovered in the first half of the 20th century. That time coronaviruses were considered as a quite serious veterinary problem but they were not believed to become highly dangerous for humans. However, such ideas were revised in 2002 when SARS-CoV was transferred to human population in the Southeast Asia assumably from the bats, and later in 2012 when natural focus of the MERS-CoV was discovered in the Arabian countries. Using PubMed, EMBASE, Scopus, and Google scholar, the authors searched for various research and review articles using the combination of terms “coronavirus, Coronaviridae, SARS-CoV, MERS-CoV, SARS-CoV-2, COVID-19, taxonomy”. Due to the increased interest a large number of new Coronaviridae family members was revealed in the first decades of the XXI century. Since then taxonomic structures of coronaviruses underwent significant changes. This review is focused on the need for continued monitoring of the biological diversity of coronaviruses. The structural studies of coronaviruses regardless of the host species may allow us to identify early changes that can affect the evolutionary drift process of a particular HCoV species involved in viral transmission from bats or birds to humans. Taking into account the migratory abilities of bats and especially birds, it is necessary to not only to include coronaviruses in the ecological monitoring programs, but also to expand the scope and depth of environmental and virological monitoring

    Methodological Approach to Application of GIS-Technologies for Epidemiological Surveillance by the Example of Leptospirosis

    Get PDF
    In order to optimize application of GIS-technologies for studies of leptospirosis, utilized have been the data on epidemiological and epizootiological investigations of leptospirosis cases in Europe, Ukraine, and Crimea. Described has been a methodological approach to the issue, comprising 4 phases and aimed at enhancement of epidemiological surveillance over leptospirosis. The first stage consists in learning the lessons of previously conducted leptospirosis mapping and specification of peculiarities of the territory. The second one is application of GIS-technologies for epidemiological analysis with a view to outlining the criteria for enzootic territory zoning, to assess dynamic qualitative and quantitative changes of epidemiological process, and estimate the impact of socio-ecological factors on the epidemic and epizootic processes. The third phase is databases creation, (attributive charts) compiled with information on geographically referenced phenomena under discussion (natural leptospirosis foci, sites of host-animal allocation, potentially hazardous areas, morbidity rates, etc.). The fourth one - complex analysis of the software designed maps. Implementation of this methodology makes it possible not only to evaluate epidemiological significance of the foci, to investigate integrated impact of socio-ecological factors on the occasion of population exposure to the infection, but also to carry out zoning of the territory taking into consideration epidemically significant factors. Therewith, it forms scientifically substantiated premises for the development and implementation of prophylactic and anti-epidemic measures

    The Effect of Transposable Element Insertions on Gene Expression Evolution in Rodents

    Get PDF
    Background:Many genomes contain a substantial number of transposable elements (TEs), a few of which are known to be involved in regulating gene expression. However, recent observations suggest that TEs may have played a very important role in the evolution of gene expression because many conserved non-genic sequences, some of which are know to be involved in gene regulation, resemble TEs. Results:Here we investigate whether new TE insertions affect gene expression profiles by testing whether gene expression divergence between mouse and rat is correlated to the numbers of new transposable elements inserted near genes. We show that expression divergence is significantly correlated to the number of new LTR and SINE elements, but not to the numbers of LINEs. We also show that expression divergence is not significantly correlated to the numbers of ancestral TEs in most cases, which suggests that the correlations between expression divergence and the numbers of new TEs are causal in nature. We quantify the effect and estimate that TE insertion has accounted for ~20% (95% confidence interval: 12% to 26%) of all expression profile divergence in rodents. Conclusions:We conclude that TE insertions may have had a major impact on the evolution of gene expression levels in rodents

    A Selection Index for Gene Expression Evolution and Its Application to the Divergence between Humans and Chimpanzees

    Get PDF
    The importance of gene regulation in animal evolution is a matter of long-standing interest, but measuring the impact of selection on gene expression has proven a challenge. Here, we propose a selection index of gene expression as a straightforward method for assessing the mode and strength of selection operating on gene expression levels. The index is based on the widely used McDonald-Kreitman test and requires the estimation of four quantities: the within-species and between-species expression variances as well as the sequence heterozygosity and divergence of neutrally evolving sequences. We apply the method to data from human and chimpanzee lymphoblastoid cell lines and show that gene expression is in general under strong stabilizing selection. We also demonstrate how the same framework can be used to estimate the proportion of adaptive gene expression evolution

    Gene Regulation in Primates Evolves under Tissue-Specific Selection Pressures

    Get PDF
    Regulatory changes have long been hypothesized to play an important role in primate evolution. To identify adaptive regulatory changes in humans, we performed a genome-wide survey for genes in which regulation has likely evolved under natural selection. To do so, we used a multi-species microarray to measure gene expression levels in livers, kidneys, and hearts from six humans, chimpanzees, and rhesus macaques. This comparative gene expression data allowed us to identify a large number of genes, as well as specific pathways, whose inter-species expression profiles are consistent with the action of stabilizing or directional selection on gene regulation. Among the latter set, we found an enrichment of genes involved in metabolic pathways, consistent with the hypothesis that shifts in diet underlie many regulatory adaptations in humans. In addition, we found evidence for tissue-specific selection pressures, as well as lower rates of protein evolution for genes in which regulation evolves under natural selection. These observations are consistent with the notion that adaptive circumscribed changes in gene regulation have fewer deleterious pleiotropic effects compared with changes at the protein sequence level

    The Cyprinodon variegatus genome reveals gene expression changes underlying differences in skull morphology among closely related species

    Get PDF
    Genes in durophage intersection set at 15 dpf. This is a comma separated table of the genes in the 15 dpf durophage intersection set. Given are edgeR results for each pairwise comparison. Columns indicating whether a gene is included in the intersection set at a threshold of 1.5 or 2 fold are provided. (CSV 13 kb

    Eigengene networks for studying the relationships between co-expression modules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is evidence that genes and their protein products are organized into functional modules according to cellular processes and pathways. Gene co-expression networks have been used to describe the relationships between gene transcripts. Ample literature exists on how to detect biologically meaningful modules in networks but there is a need for methods that allow one to study the relationships between modules.</p> <p>Results</p> <p>We show that network methods can also be used to describe the relationships between co-expression modules and present the following methodology. First, we describe several methods for detecting modules that are shared by two or more networks (referred to as consensus modules). We represent the gene expression profiles of each module by an eigengene. Second, we propose a method for constructing an eigengene network, where the edges are undirected but maintain information on the sign of the co-expression information. Third, we propose methods for differential eigengene network analysis that allow one to assess the preservation of network properties across different data sets. We illustrate the value of eigengene networks in studying the relationships between consensus modules in human and chimpanzee brains; the relationships between consensus modules in brain, muscle, liver, and adipose mouse tissues; and the relationships between male-female mouse consensus modules and clinical traits. In some applications, we find that module eigengenes can be organized into higher level clusters which we refer to as meta-modules.</p> <p>Conclusion</p> <p>Eigengene networks can be effective and biologically meaningful tools for studying the relationships between modules of a gene co-expression network. The proposed methods may reveal a higher order organization of the transcriptome. R software tutorials, the data, and supplementary material can be found at the following webpage: <url>http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/EigengeneNetwork</url>.</p

    The Evolution of Gene Expression QTL in Saccharomyces cerevisiae

    Get PDF
    Understanding the evolutionary forces that influence patterns of gene expression variation will provide insights into the mechanisms of evolutionary change and the molecular basis of phenotypic diversity. To date, studies of gene expression evolution have primarily been made by analyzing how gene expression levels vary within and between species. However, the fundamental unit of heritable variation in transcript abundance is the underlying regulatory allele, and as a result it is necessary to understand gene expression evolution at the level of DNA sequence variation. Here we describe the evolutionary forces shaping patterns of genetic variation for 1206 cis-regulatory QTL identified in a cross between two divergent strains of Saccharomyces cerevisiae. We demonstrate that purifying selection against mildly deleterious alleles is the dominant force governing cis-regulatory evolution in S. cerevisiae and estimate the strength of selection. We also find that essential genes and genes with larger codon bias are subject to slightly stronger cis-regulatory constraint and that positive selection has played a role in the evolution of major trans-acting QTL

    Translog, a web browser for studying the expression divergence of homologous genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing amount of data from comparative genomics, and newly developed technologies producing accurate gene expression data facilitate the study of the expression divergence of homologous genes. Previous studies have individually highlighted factors that contribute to the expression divergence of duplicate genes, e.g. promoter changes, exon structure heterogeneity, asymmetric histone modifications and genomic neighborhood conservation. However, there is a lack of a tool to integrate multiple factors and visualize their variety among homologous genes in a straightforward way.</p> <p>Results</p> <p>We introduce Translog (a web-based tool for Transcriptome comparison of homologous genes) that assists in the comparison of homologous genes by displaying the loci in three different views: promoter view for studying the sharing/turnover of transcription initiations, exon structure for displaying the exon-intron structure changes, and genomic neighborhood to show the macro-synteny conservation in a larger scale. CAGE data for transcription initiation are mapped for each transcript and can be used to study transcription turnover and expression changes. Alignment anchors between homologous loci can be used to define the precise homologous transcripts. We demonstrate how these views can be used to visualize the changes of homologous genes during evolution, particularly after the 2R and 3R whole genome duplication.</p> <p>Conclusion</p> <p>We have developed a web-based tool for assisting in the transcriptome comparison of homologous genes, facilitating the study of expression divergence.</p

    Gene Expression in Chicken Reveals Correlation with Structural Genomic Features and Conserved Patterns of Transcription in the Terrestrial Vertebrates

    Get PDF
    Background - The chicken is an important agricultural and avian-model species. A survey of gene expression in a range of different tissues will provide a benchmark for understanding expression levels under normal physiological conditions in birds. With expression data for birds being very scant, this benchmark is of particular interest for comparative expression analysis among various terrestrial vertebrates. Methodology/Principal Findings - We carried out a gene expression survey in eight major chicken tissues using whole genome microarrays. A global picture of gene expression is presented for the eight tissues, and tissue specific as well as common gene expression were identified. A Gene Ontology (GO) term enrichment analysis showed that tissue-specific genes are enriched with GO terms reflecting the physiological functions of the specific tissue, and housekeeping genes are enriched with GO terms related to essential biological functions. Comparisons of structural genomic features between tissue-specific genes and housekeeping genes show that housekeeping genes are more compact. Specifically, coding sequence and particularly introns are shorter than genes that display more variation in expression between tissues, and in addition intergenic space was also shorter. Meanwhile, housekeeping genes are more likely to co-localize with other abundantly or highly expressed genes on the same chromosomal regions. Furthermore, comparisons of gene expression in a panel of five common tissues between birds, mammals and amphibians showed that the expression patterns across tissues are highly similar for orthologuous genes compared to random gene pairs within each pair-wise comparison, indicating a high degree of functional conservation in gene expression among terrestrial vertebrates. Conclusions - The housekeeping genes identified in this study have shorter gene length, shorter coding sequence length, shorter introns, and shorter intergenic regions, there seems to be selection pressure on economy in genes with a wide tissue distribution, i.e. these genes are more compact. A comparative analysis showed that the expression patterns of orthologous genes are conserved in the terrestrial vertebrates during evolutio
    corecore